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Engineers design for an inherently uncertain world. In the early stages of design processes,
they commonly account for such uncertainty either by manually choosing a specific worst-
case and multiplying uncertain parameters with safety factors or by using Monte Carlo
simulations to estimate the probabilistic boundaries in which their design is feasible. The
safety factors of this first practice are determined by industry and organizational standards,
providing a limited account of uncertainty; the second practice is time intensive, requiring
the development of separate testing infrastructure. In theory, robust optimization provides
an alternative, allowing set-based conceptualizations of uncertainty to be represented
during model development as optimizable design parameters. How these theoretical bene-
fits translate to design practice has not previously been studied. In this work, we analyzed
the present use of geometric programs as design models in the aerospace industry to deter-
mine the current state-of-the-art, then conducted a human-subjects experiment to investi-
gate how various mathematical representations of uncertainty affect design space
exploration. We found that robust optimization led to far more efficient explorations of pos-
sible designs with only small differences in an experimental participant’s understanding of
their model. Specifically, the Pareto frontier of a typical participant using robust optimiza-
tion left less performance “on the table” across various levels of risk than the very best fron-
tiers of participants using industry-standard practices. [DOI: 10.1115/1.4048580]
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1 Introduction
Engineering designers use complex computational models to

represent a variety of problems, despite their awareness that the
results will not be perfectly recreatable in the physical world.
Even if a model was able to represent a specific problem perfectly,
environmental conditions and physical realities are rarely stable or
knowable; for example, an engineer may declare the density of a
metal as a particular value, but in manufacturing the metal supplied
will vary from supplier to supplier and day to day. Beyond material
quantities, such uncertainty is also inevitable for environmental
conditions, assembly quality, and many other important compo-
nents of performance. Accounting for such uncertainty is therefore
a necessity that designers often represent through the manual imple-
mentation of conservative heuristics.
Convex geometric programs (GPs), sets of algebraic constraints

globally optimizable for a specific cost function, are capable of
representing a variety of complex systems. Historically, the inacces-
sibility of software used to create and solve GPs has restricted their
use in engineering design. The PYTHON package GPkit provides a
familiar and clear syntax for geometric programs, reducing this
barrier to entry [1]. Through GPkit, several engineering design
firms have adopted GPs for regular use in their processes, typically
to validate the feasibility of innovative conceptual designs.
At present, GPkit models (along with most other design models)

do not provide interfaces specifically for the representation of
uncertainty. Designers instead set some parameters’ values to a

“reasonable worst case,” often via multiplication by a blanket
“safety factor.” Robust optimization aims to address this by allow-
ing specified uncertainties to be set on parameters, then optimizing
for the best worst-case performance under a given uncertainty set
[2]. This method provides more mathematical guarantees than
safety factors do and is more directly translatable to a simulation
environment.
Howmuch these mathematical details affect designers and design

practice is unclear. The marginal improvement in design quality
may or may not be worth the effort of changing designer’s concep-
tualizations of their model. However, we argue that robust optimi-
zation’s potential benefits come not only from its underlying
mathematics, but also from the novel “questions” it lets designers
ask of their models. When uncertainty is explicitly defined in
robust GPs, it can be optimized for as if it were any other variable.
This provides a dynamic understanding of uncertainty, encouraging
discussions of robustness earlier in a design process. This study
seeks to explore ways in which robust optimization can affect the
practice of creating designs and provides evidence that robust
GPs improve design space exploration, increasing designs’
quality, quantity, and coverage relative to an underlying Pareto
frontier of optimal tradeoffs.

1.1 Research Questions. Previous work has shown that robust
optimization provides a mathematically rigorous method of
accounting for uncertainty [3,4]. However, its effects on the ques-
tions designers ask of their models has not yet been analyzed. In
this study, we ask the following questions:

RQ1 How do designers conceptualize uncertainty? How do
particular conceptualizations change their comfort with
robust optimization?
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RQ2 How do different mathematical formulations of uncer-
tainty, as represented in a design model, affect designers’
explorations of possible designs?

RQ3 What design processes do robust optimization tools alter
or automate?

Our study had two stages. The first, a series of practitioner field
interviews, was used to guide the design of the second, a human-
subjects experiment in a controlled environment. We address
RQ1 by summarizing how current users of GPkit account for uncer-
tainty in their design processes and looking at how experimental
participants used robust optimization to account for uncertainty.
RQ2 is addressed by analysis of the quality and spread of experi-
mental participants’ solutions. RQ3 is touched on in comparisons
between processes for uncertainty accounting described in inter-
views and those seen experimentally, but we anticipate its full
investigation to also require field studies of how robust optimization
affects organizational processes.

2 Background
A substantial amount of research has been conducted on software

tools for design, analysis, and robust optimization, but the develop-
ment of particular tools is not our focus. Rather, we are interested in
how designers use these tools and how the choice, application, and
integration of these tools can impact design process exploration.
The set of tools we use varies in their handling of uncertainty and
robustness. To better specify this variety, we define uncertainty as
variables listed as a fixed constant in our model having instead a
set of possible values. Robustness is the ability of the design to
still function with small perturbations of these fixed variables; the
larger a perturbation that can be handled, the more robust the
design is.

2.1 Frameworks for Early Stage Design. Many frameworks
exist for early stage design processes for products and engineered
systems, including Pahl and Beitz” systematic approach to engi-
neering design and Ulrich et al.’s widely known process for
product design and development [5,6]. Underpinning both
approaches is the notion of a design specification and/or initial pro-
totype created by an engineering and design team. The initial proto-
types being considered in this study are PYTHON codes using the
GPkit library [1]. The current design specification of these models
does not include a method of accounting for uncertainty; we will
refer to the additional design specification of uncertainty as the con-
ceptualization of uncertainty within the model.

2.2 Design Models. Human participants in engineering orga-
nizations use software “design models” to enumerate parameters
of their designs and implement interactions amongst these parame-
ters. Design models are often made from materials like parameter-
ized CAD assemblies (to construct a shape from geometric
constraints) [7,8], spreadsheets (to calculate performance) [9,10],
and “mathematical programs” (to take in a desired performance
and put out a design that achieves it) [11].
Design models serve as loci for understanding what will be built,

while encoding (and sometimes concealing) decisions on why [12].
This makes them an important arena for intra-organizational design
politics, but just how participants’ perspectives clash and coalesce
around these models depends also on the motif they are part of
Refs. [7,13]. Design models express their agency both by shaping
the motif and, within a motif, by determining their outsiders and
insiders, spectators and maintainers, and formal and informal
power structures [7,14].

2.3 Design Tools and the Designer. Software tools, most
notably CAD, are essential to design and production, and a number
of studies have considered the impact of these tools on early

stage designs. In the exploratory phases of design, studies with
practicing engineers and student designers have observed that the
use of CAD too early in the design process can have a negative
effect on design creativity, known as “premature fixation”
[12,15]. High fidelity digital tools require more time and effort on
the part of the designer than lower fidelity tools, making designers
more invested in a design and less likely to discard it. This is an
observation of not only the design tool, but the way that designers
use the tools in practice [16]. Our study takes a similar designer-
focused perspective on exploration using a design tool by formulat-
ing a constrained but realistic design problem with minimal inter-
face complexity. Our design tool is GPkit, and we investigate the
effect of a more detailed but potentially confusing mathematical
model of uncertainty on the ability of users to find optimal solutions
using this tool. The exact mathematics behind how uncertainty is
calculated will be referred to as the formulation of uncertainty.

2.4 Design Optimization and the Designer. An overarching
goal of design optimization research is to create tools and systems
that can support designers by generating the “best” solutions by
searching through the set of all possible solutions, or the design
space. The majority of research in design optimization concentrates
on the development of better and faster algorithms and strategies,
and only limited research has been conducted on how designers
themselves reach globally or locally optimal solutions, and how
this is affected by their tools.
In an early study of how humans deal with coupled problems,

Hirschi and Frey compared the time to solve coupled and uncoupled
parametric design problems [17]. For uncoupled problems, the time
to solve was of the order of O(n) where n is the number of input
variables, and increased dramatically to O(n3.4) for coupled prob-
lems. Notably, coupled problems with more than four variables
were found to be very difficult and frustrating for the participants.
Similarly, human studies by Flager et al. showed that an increase
in problem complexity caused a significant decrease in solution
quality [18]. A study by McComb et al. showed specifically that
more complex 2D trusses led to worse performance [19]. Austin-
Breneman et al. found that, despite domain expertise and optimiza-
tion training, graduate students asked to collaboratively design a
simplified satellite had trouble exploring the design space because
of the complexity of subsystems and subsystem interactions, and
few teams found designs on the Pareto-optimal frontier [20]. In
interviews with space system designers, it was found that teams
in industry routinely restricted the information shared with each
other in ways that made exploration much more difficult both in
practice and from the perspective of optimization theory [21].
Yu’s study of desalination systems found that software choices
could enable novices to explore complex system designs almost
as well as experts, with some caveats [22]. Designer satisfaction
with rapid prototyping process has been explored by Neeley
et al., who found that designers tended to be more satisfied with
design outcomes when given the opportunity to explore more
design space initially [23]. Specific questions of how real-time
interfaces affect design outcomes were present in the first direct-
manipulation CAD software [8], in early studies of the effect of anal-
ysis speed on structural design exploration and outcomes [24], and
in more recent research on human-computer optimization in
circuit-routing [25] and in architectural design [26].
We hope to extend such studies by directly measuring the effects

of real-time software decisions and algorithms on design outcomes
and process. Previous studies by Barron et al. and Egan et al.
[27,28] have looked at the effects of visualization and search tech-
niques in custom tools that use different visual representations and
search strategies than designers may be accustomed to; in contrast,
our study uses familiar visual representations and interaction
modalities but changes the conceptualization and formulation of
the design problem. Since this design problem has two goal param-
eters, we define “optimality” in terms of the Pareto frontier—a
subset of the possible solutions such that each solution on the
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Pareto frontier is either better in the first goal parameter or the
second goal parameter compared to any other solution.

2.5 Geometric Programs. Geometric programs are nonlinear
optimization problems of a set of posynomial constraints and a
cost function known as the objective. A posynomial is a sum of
monomials, where a monomial is a set of variables raised to any
positive real power multiplied together with a positive coefficient.
Formally, a posynomial p(x) can be defined as

p(x) =
∑K

k=1

ck
∏n

j=1

x
aj,k
j (1)

where x is a vector of all variables, n is the length of x, and therefore,
the number of variables, K is the number of monomials, all ck are
positive real numbers, and all aj,k are real numbers [29].
A geometric program is defined by minimizing a posynomial

objective function subject to posynomial constraints that must be
less than or equal to some positive value. Geometric programs
have the practical feature that, when transformed logarithmically,
they become convex, guaranteeing only one local minimum
exists-the global minimum. This allows for gradient descent in log-
space to always find the globally optimal solution. GPkit serves as a
PYTHON interface for geometric program solvers such as MOSEK
and cvxopt [30,31] that allows users to define these objectives and
constraints intuitively. It then can solve for the optimal solution and
can visualize the structure of the models and the feasible solution
space. GPkit has enabled engineering designers who are not
experts in mathematical optimization to create, solve, and under-
stand GP models by black-boxing computational details and provid-
ing diagramatic representations of the underlying mathematics. If
negative ck values are necessary, a signomial program can be
used, which can be optimized via multiple geometric program
approximations.

2.6 Robust Convex Optimization. While geometric pro-
grams are highly generalizable, they run the risk of being overly
specialized solutions relative to the uncertainty that exists. To
account for that uncertainty, Robust, an add-on GPkit package,
allows for the inclusion of standard deviations on each variable,
as well as an overall “Gamma” factor (γ) that scales the amount
of uncertainty accounted for, then optimizes the worst point of a
region of uncertain parameters. The region can either account for
a certain number of standard deviations of each parameter (“rectan-
gular” uncertainty) or of a combination of all parameters (“ellipti-
cal” uncertainty). A visual explanation of elliptical uncertainty is
in Fig. 1. This process is generally known as robust optimization.
Work on Robust has shown that the current standard of multiplying
each uncertain variable by a margin does not take into account the
worst combined case mathematically and that robust optimization is
necessary to fully account for uncertainty [3]. While the quantitative
case for Robust has been made, the question of how this affects the
overall design process, particularly in the context of design space
exploration, has not yet been answered.

3 Practitioner Interviews
This study was divided into two stages. The first exploratory

stage—practitioner interviews—produced qualitative data on
Robust adoption’s benefits, risks, obstacles, and conditions. From
the information gathered in these interviews, we designed the exper-
imental second stage to address the concerns raised and to provide
these users with further guidance on how and when to incorporate
robust optimization into their existing models.

3.1 Methods. To understand current practices of accounting
for uncertainty in design models, we interviewed five GPkit users
with a flexible questionnaire focusing on how they accounted for

uncertainty within their models. Each of the five interviews lasted
for half an hour to an hour and took place off campus, either at
the interviewee’s place of work or at a public location like a
coffee shop. Interviewees varied in the extent of their experience
with GPkit, their interactions with GPkit (developers versus design-
ers), and their affiliations (academic versus commercial), though all
were in the field of aerospace, where most GPkit models are made; a
detailed breakdown can be seen in Table 1. First, we asked about
each designer’s work to encourage engagement in the conversation
and to understand their background. We then explored the work-
flows of their projects before and after using GPkit, asking them
to speak of particular projects to ground their answers. We then
asked more targeted questions about uncertainty, looking for speci-
fic methods. Finally we asked broadly about inefficiencies they had
encountered while modeling, to understand how salient issues sur-
rounding uncertainty are relative to other concerns. Conversations
were analyzed using open coding.
These interviews were the backbone of our experimental design

for the second stage, for we based its guiding questions on the con-
cerns expressed by those interviewed.

3.2 Results. When we asked interviewees how they accounted
for uncertainty during conceptual stages of design, we received two
responses: either they (1) multiplied uncertain parameters by a
margin or safety factor of 20% (considered an industry standard)
or (2) did not account for uncertainty at those stages. Some inter-
viewees mentioned checking if their design was robust to small per-
turbations in environmental conditions via Monte Carlo simulation,
but usually as a final check of a model’s solution, not during model

Table 1 Practitioner demographics

1 2 3 4 5

Developer X X
Designer X X X X
Academic X X X X
Commercial X X X
Experienced X X X X

Note: Each column represents an interviewed practitioner, each row a trait.
An “X” indicates that the practitioner has this trait. “Developer” means they
have been involved in GPkit’s development process; “Designer”means they
have created GPkit models as a part of a longer product development
process. “Academic” and “Commercial” refer to the contexts in which the
practitioner has worked with GPkit. “Experienced” refers to having
multiple years of experience using GPkit.

Fig. 1 Elliptical uncertainty. μr is the expected range, σr is the
standard deviation of possible ranges, μs is the expected
takeoff speed, and σr is the standard deviation of possible
takeoff speeds. In robust optimization, each design’s worst
case of the range of possibilities in the ellipse is found, and the
design with the optimal “worst case” is chosen. Increasing γ
accounts for more uncertainty by scaling up the ellipse, as γ is
a multiplier of the standard deviations.
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development. Most interviewees believed they should be account-
ing for uncertainty, but did not consider it a priority due to a per-
ceived lack of social pressure to do so; if none of their peers were
trying to account for uncertainty, why should they? Almost every-
one interviewed considered uncertainty quantification an important
problem, but also thought of it as intractable and impractical.
Interviewees discussed how safety factors can lead a design to be

incorrectly seen as infeasible. One talked in particular about electric
airplanes, much of whose mass rests in their battery. Putting a safety
factor on total airplane weight increases the amount of battery
needed, which increases the total airplane weight; the process con-
verges, but often leaves a design looking impossible. Therefore,
instead of weight safety factors, this interviewee accounted for
excess weight by making the allowable payload a maximized free
variable, even though this makes it more difficult to design for an
exact payload.
Deciding on a model’s objective function—the parameter it opti-

mizes for—was described as the “single most important choice” of
modeling. In robust optimization, uncertainty can be the optimized
parameter. This allows for different conceptualizations of a design
problem. With the electric aircraft above, instead of calculating
the battery size required to handle 20% extra weight, designers
might use robust optimization to calculate the maximum level of
uncertainty allowable for an airplane capable of carrying a specific
payload.
That our interviewees used GPkit primarily during conceptual

design stages made the detailed accounting for uncertainty of
robust optimization seem less necessary to them. In order to use
robust optimization, they would have to create models with
increased complexity in both concept and form, more difficult to
interpret and to code. Some practitioners were additionally skeptical
that doing so would significantly improve conceptual designs, as the
uncertainties known at such an early stage felt more “made up” than
other design parameters. While they found current uncertainty
accounting practices to be more arbitrary, they felt that the specific
uncertainty values they would choose in robust optimization might
be just as arbitrary without the benefit of following industry stan-
dards. This formed the question for our human-subjects experiment:
can robust optimization be useful (in comparison to current prac-
tices) even with guessed parametrizations of uncertainty?

4 Human-Subjects Experiment
This experiment provided a direct comparison between methods

of accounting for uncertainty with different computational models.
We wanted in particular to see how additional uncertainty informa-
tion mathematically encapsulated in models might shape designer’s
practices.

4.1 Methods. Forty-three graduate and undergraduate students
in science and engineering at a US university were recruited to indi-
vidually participate in a design challenge using a custom built
graphical interface for a GPkit design model. Participants were
prompted to choose parameters for an airplane design which led
to designs with both as low a failure rate and as low a fuel consump-
tion as possible. They were tasked with finding designs in three
“reward regions” and to find designs on the final combined Pareto
frontier; participants received greater compensation depending on
their performance on these metrics. Each participant was given a
ten minute tutorial, 30 min to complete the design challenge, and
10 min to complete a short survey about their experience using
the tool after the experiment, based on surveys used in similar
experiments [32]. The code used for this experiment is available
in an open source GitHub repository.2

4.1.1 Experimental Interface. The graphical interface shown in
Fig. 2 allowed users to directly modify a small set of parameters

with sliders (A), then optimized a design based on those parameters
and presented its fuel consumption (performance) and simulated
failure rate. Participants kept track of the history of their designs
with a plot of each design’s fuel consumption and failure rate (B),
a list of parameter combinations they’d tried that led to infeasible
designs (C). The three reward regions were also shown on (B), pro-
viding a visual reminder of their goals. Additionally, participants
saw the planform of their most recent airplane design (D). Sliders
had discrete step values, but allowed arbitrary precision via
typing. Fuel consumption was evaluated by solving the GPkit
design model for the input slider values, while failure rate was
determined by checking the model’s feasibility across a set of one
hundred randomized conditions; conditions were sampled from a
multivariate truncated Gaussian probability distribution. A fixed
set was used for all participants to enable comparability between
the failure rates of various designs. This method of determining
failure rates is similar to best-practices Monte Carlo simulations.
The design model underlying this graphical interface was based

on the “SimPleAC” GPkit model for passenger aircraft, [33] itself
a condensed version of previous GPkit models for commercial air-
craft [34,35] that had been co-developed with the robust optimiza-
tion library [3]. While SimPleAC relies on approximately 40
different variables to minimize the fuel consumption, participants
were only given control of four to five variables. This simplified
the task to allow novices to perform it within an hour. The invisible
variables and constraints then served as a black box, making beha-
vior of the model difficult to predict. While expert users would have
access to this information, they too would not easily be able to intu-
itively predict changes in model behavior without running the simu-
lation due to the mathematical complexity.

4.1.2 Experimental Conditions. Subjects were randomly parti-
tioned into the four experimental conditions: two conditions similar
to existing practices (Control and Margin) and two using robust
optimization (Gamma Slider and Performance Slider). A break-
down of participant demographics can be found in Table 2. Partic-
ipants using Control chose design parameters such as wing size;
those using Margin chose safety factors, those using Gamma
Slider chose the precise shape and scale of the uncertainty region
they were optimizing for, while those using Performance Slider,
chose the shape of that region and a desired performance, letting
the optimizer maximize the scale of the uncertainty region. A list

(a) (c)

(b) (d )

Fig. 2 Mock-up of experimental UI. The three reward regions
highlighted in the plot are designs with a fuel consumption
below 1100 lbs (the top left in blue), designs with failure rate
below 10% (the bottom right in yellow), and designs with both a
fuel consumption below 1200 lbs and a failure rate below 30%
(the bottom left in green). The ordering of participant’s designs
was tracked through a line, with the most recent points in
bright pink and older points in dark purple. A screenshot of the
actual UI is in Fig. 9.

2https://github.com/convexengineering/robust˙experiment
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of variables modified by experimental condition can be found in
Table 3. The uncertainty region was set to be elliptical, which repre-
sents a percentage of combined uncertainty being accounted for.
Both Control and Margin represent current design practices:
Control simulates common practices with non-optimizing design
models, while Margin simulates current practice with GPkit
models. Gamma Slider and Performance Slider represent the
intended design practices Robust enables. Control is less directly
comparable to the other three conditions; since it does not
account for uncertainty, there are no equivalent variables for it. It
is included to represent the most common engineering design prac-
tice. The additional variable in Gamma Slider and Performance
Slider may have increased the difficulty of the design task [17],
but we wanted to account for the added difficulty of robust optimi-
zation practice in comparing these conditions. We expected to see
improvements to design space exploration coverage and quality
with robust optimization despite the additional complexity.
Control users saw the fuel consumption of their designed airplane

in the context it was optimized for, while users of the other design
models saw performances which “priced in” uncertainty. Since the
reward regions were identical across conditions, a larger fraction of
possible designs Control users were able to find appeared in these
regions. This kind of biased comparison is common in robust opti-
mization practice. To compare performance across conditions
during the analysis, designs made in non-Control conditions were
“nominalized” by recalculating performance of each design in the
nominal conditions Control designs had seen.

4.2 Results. Prior to analyzing the quantitative data of the
experiment, we assessed our overall impressions of each of the

conditions from piloting and from informal conversations with par-
ticipants after the human-subject experiments. These conversations
provided us with additional information that participants preferred
to convey verbally rather than formally write in the survey. Partic-
ipants in the Control condition seemed to have the most direct
understanding of how or why their parameter changes affected per-
formance and failure rate, especially if they had some experience
with airplane design. Participants in the Margin condition found
their designs highly sensitive to even small parameter changes; it
seemed easy to accidentally go to extremes with this tool. For
both Performance Slider and Gamma Slider participants, it
seemed difficult to find designs far away from the Pareto frontier.
Performance Slider participants could, by keeping the performance
slider consistent, constrain their motion on the results plot to a
single vertical line, allowing them to separate dimensions inextrica-
bly linked for other users. Gamma Slider participants could, by
keeping their standard deviations constant and only modifying the
size of their uncertainty set, move along a single curve. While all
conditions worked with four coupled variables, the addition of a
uncoupled variable appears to have simplified the design task by
reducing its dimensionality. Being able to act in only one “dimen-
sion” in these ways seemed to make the challenge less stressful
for both Gamma Slider and Performance Slider participants.
To see if these impressions were validated by our data, we ana-

lyzed qualitative results from the post-experiment survey, which
gave participants a set of statements and asked them to rate how
much they agreed or disagreed with each on a six point Likert
scale (Fig. 3). Comparisons between Control and other conditions
were biased by Control’s easier access to the goal regions; given
this, the fact that Control felt less stressed and frustrated than
most other conditions is unsurprising. Between other conditions,
we saw differences in the amount participants felt like they “had
a plan,” were “in control,” were “frustrated,” or were “stressed.”
As expected, robust optimization conditions were mildly less stress-
ful and frustrating than Margin. However, Gamma Slider partici-
pants felt the least like they had a plan and were in control. This
may indicate confusion about the “Gamma” parameter, which, as
a robust optimization specific term, was unfamiliar. Despite this,
Gamma Slider participants had the highest quality solutions of all
conditions. Even without feeling they understood what they were
doing, Gamma Slider participants were able to find high quality
designs.
The rest of this section quantitatively compares solutions across

all four conditions. The design challenge incentivized participants

Table 2 Participant demographics (self-reported)

Control Margin Gamma Slider Perf. Slider
n= 10 11 11 11

Gender
Female 4 4 4 9
Male 6 7 7 2

Education
Freshman 0 2 0 1
Sophomore 4 2 2 1
Junior 1 2 0 1
Senior 1 1 3 3
Masters 2 2 3 2
PhD 2 2 3 4

Department
CS 3 4 3 3
Aero 4 3 4 3
Mech E 2 3 3 4
Other/None 1 1 1 1

Note: Conditions were randomly assigned without stratification.

Table 3 Variables by condition

Control Margin
Gamma Slider Perf. Slider

N/A Gamma Perf.

Wing length Wing weight uncertainty
Wing area TSFC uncertainty
Fuel volume available Takeoff speed uncertainty
Lift coefficient Range uncertainty

Note: Control users directly manipulated four physical design parameters of
the airplane, while Margin, Gamma Slider, and Performance Slider users
directly manipulated parameters which accounted for uncertainty. While
Margin, Gamma Slider, and Performance Slider were able to modify
variables accounting for uncertainty, these variables did not exist in the
Control model; Control’s variables are directly optimized for in the other
conditions.

Fig. 3 Results from post-experimental survey. A six point Likert
scale was used to evaluate the emotional reaction of participants
to the experimental setup. Participants filled out the post-
experimental survey immediately after finishing the experiment.
Due to small sample size, no statistical significance was found
using a pairwise t-test.
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not to find an optimal solution given a single goal, but rather to find
a Pareto frontier of optimal solutions in terms of two goal parame-
ters, performance and failure rate. To statistically analyze the influ-
ence conditions had on design outcomes, we compare the quantity
of high quality points found in Fig. 4. The metrics of Pareto points
and combined Pareto points serve as proxies for how much of the
space was covered; the percent inside reward regions serves as a
proxy for design quality. We see significant differences between
robust optimization methods and standard methods in these
metrics, providing evidence for the hypothesis that robust optimiza-
tion encourages more exploration of optimal designs and increases
the quality of each design explored. The effect sizes of robust con-
ditions versus margins and control are also quite large—all statistics
have a Cohen’s d statistic of 0.7 or higher, with the percent of points
in the reward region having a Cohen’s d statistic of over 2.
The number of points metric is an indication of how much explo-

ration participants were willing to do given specific tools; the large
number of points in robust conditions indicates that exploration was
faster and/or participants were more willing to explore. The end
times did not show significant differences, as there was no incentive
to finish early. The tool itself did not take additional time to run in
the Control or Margin conditions—in fact, it may have been slightly
slower in the Robust conditions. The Control condition, where the
reward regions were the easiest to achieve, provided less financial
incentive to explore, which may have discouraged exploration.
However, the Margin condition rated as slightly more stressful
and frustrating due to its lack of predictability; participants may
have been disincentivized to explore by stress or frustration, or
may have required more time to determine the next point to test.
A benefit of robust optimization may be either reduced stress and
frustration or more intuitive changes in design quality, both
leading to increased iteration.
We parameterize a design’s quality with two dimensions: the

improvement in failure rate that could have been achieved for that
design’s performance (vertical distance on the following plots),
and the improvement in performance that could have been achieved
for its failure rate (horizontal distance). In both cases, designs were
compared to the final combined Pareto frontier achieved by other

participants. Figures 5 and 6 show the distribution of these distances
across participants’ Pareto frontiers. Because we used the same
reward regions across conditions, the difficult central region
became therefore a focal point for some participants, as can be
seen in the compression of their distribution at that point. With nor-
malized performance, Control and the least-performant half of
Margin participants are clearly separated from the combined fron-
tier, while other participants are quite close.
To see the differences between the Pareto frontiers achieved by

participants under condition, we summarize each individual frontier
by its average vertical distance (Fig. 7) and horizontal distance
(Fig. 8). We consider individual’s frontiers all together instead of
each of their points because such frontiers are the primary output
of design model use, not a particular design point. That is, our sim-
plified framework for the use of these models in a design process is
(1) a condition is selected, (2) a Pareto frontier created, and (3) a con-
dition is chosen from that Pareto frontier based upon the whole
frontier.
Figure 7 shows the distributions of excess failure rates

(average vertical distance) across the frontiers made with each
condition. There is a clear distinction between Control and
Margin, and between both of them and the two robust conditions.

Fig. 4 Summary statistics. Significant differences (Pairwise
t-test with Holm–Šidák correction, p<0.05) indicated by an aster-
isk. “Points” refers to the number of feasible designs generated
by each participant within 30 min. “% in R.R.” refers to the
percent of nominalized designs per participant that were in any
of the regions with financial incentive. “Pareto” refers to the
average number of points found by each participant in each con-
dition that were on the combined experimental Pareto frontier
across all conditions. n=11 for all conditions except control, in
which n=10. Shaded region shows the distribution for each con-
dition, darker between the 25th and 75th percentiles. Black dots
show medians. ANOVA testing shows significance in all (points:
p=0.036, % in R.R.: p<0.001, Pareto p=0.006).

Fig. 5 Distribution of fuel consumptions. Solid lines show
median of participants’ Pareto frontiers after nominalization.
Shaded regions extend above it to the 75th percentile and below
to the 25th. The black dashed line shows the combined final
Pareto frontier, while solid black lines indicate reward regions.

Fig. 6 Distribution of failure rates. Solid lines show median of
participants’ Pareto frontiers after nominalization. Shaded
regions extend to its right to the 75th percentile and to its left
to the 25th. The black dashed line shows the combined final
Pareto frontier, while solid black lines indicate reward regions.
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Figure 8 shows the distribution of excess fuel consumption (average
horizontal distance) across conditions. The frontiers of median users
of the robust models perform better by this metric than the best users
of Margin and Control, and every user of robust models performs
better than three quarters of Control users. Effect sizes as calculated
by the Cohen’s d statistic are all greater than 0.9 between robust and
non-robust conditions.

5 Discussion
These results are evidence that robust optimization can increase

design quality. Returning to our fundamental research questions,
what do they imply about the effects of conceptualizations and for-
mulations of uncertainty, and what current design practices might
robust optimization alter or automate?

5.1 RQ1: Conceptualization of Uncertainty. From practi-
tioner interviews, we found that uncertainty conceptualization in
the early stages of airplane design is minimal, partly because uncer-
tainty is considered fruitless to estimate by our intervieweeswhen the
overall design is rapidly changing. However, we found two types of
uncertainty were being mixed together: (1) uncertainty related to
changes that were part of the design process and (2) uncertainty
related to the range of possibilities the final design might face. The

conceptual merging of these meant that designers who did not
think they could account for the first type, also thought they could
not account for the second. For robust optimization to be used in con-
ceptual design, itmustmake clear it is formulated for the second type.
Given that designers at this stage do not often conceptualize this

second type of uncertainty, how might they adopt robust optimiza-
tion? Experimental participants in the robust Performance Slider
condition felt most like they “had a plan”; Gamma Slider partici-
pants felt least like they had a plan. This implies that, for non-expert
users, the terminology of robust optimization (present in Gamma
Slider as the “Gamma” factor, but absent in Performance Slider)
may be a barrier to entry. However, the concept of optimizing for
uncertainty, present in both conditions, did not seem to hinder
understanding (using “felt like they had a plan” as a proxy). For
GPkit users trying robust optimization, we would expect the transi-
tion to be eased by parallels between the conceptualization of uncer-
tainty in robust optimization and uncertainty questions already
asked later in the design process. The Performance Slider condition
is analogous to finding the most robust design possible for a certain
performance; the Gamma Slider condition is analogous to finding
the most performant design possible for a specific uncertainty set.
The additional complexity of design models in practice and the
lack of GUI-based abstraction may limit the generality of these
results.

5.2 RQ2: Formulation of Uncertainty. The current process
of GPkit model creation does not encourage a rigorous formulation
of uncertainty. Practitioners discussed multiplying uncertain fixed
variables with industry-standard safety factors, but this method
seemed more of a default practice rather than one engaged with a
conceptualization of uncertainty.
In our experiment, the Control condition had no formulation of

uncertainty, the Margin condition encapsulated uncertainty in
safety factors, and the robust optimization conditions encapsulated
uncertainty in relative standard deviations. Results showed partici-
pants in Control and Margin were far worse at finding Pareto
optimal points than participants in robust optimization conditions:
75% of robust optimization frontiers were better than the median
frontier of the other conditions. Additionally, formulating uncer-
tainty as a directly controllable variable seems to have reduced
the quantity of suboptimal designs explored.
In this simplified design challenge, the model’s formulation was

abstracted away from the participants. In practice, users of GPkit
would need to understand robust optimization well enough to
create these models on their own. While Robust was designed to
only require a small amount of additional code, the mathematical
increase in understanding needed to create such syntax was not
accounted for within this study. It remains to be investigated as a
possible obstacle to usage of robust optimization in GPkit.

5.3 RQ3: Automated Design Processes. Our experiment was
designed to represent both designers’ present design exploration
processes and the potential processes of robust optimization. Our
failure rate simulation was meant to mimic a designer testing their
design, either through Monte Carlo simulation, more complex com-
putational modeling, or prototype creation. In this study, this failure
rate simulation formed the “ground truth” of the participants
involved; in practice, the ground truth could not be so easily discov-
ered at this stage. A simulation similar to ours would serve as an
early check in the design process, rather than the final one.
Current design processes were emulated by the Control and

Margin conditions. Control emulated the process of manually
setting design parameters without use of optimization, as is
common in conceptual aerospace design. Our results find that,
while it is possible to find high quality solutions this way, it is dif-
ficult to do so consistently. Our Margin participants emulated the
process of specifying safety factors within an optimization frame-
work such as GPkit. Margins are not so flexibly set in practice.
Instead, they are generally fixed at an industry-standard value.

Fig. 7 Average excess failure rates. Significant differences
(Pairwise t-test with Holm–Šidák correction, p<0.05) indicated
by an asterisk. Shaded region shows the distribution for each
condition, darker between the 25th and 75th percentiles. Black
dots show medians. ANOVA testing shows significance across
conditions (p<0.001).

Fig. 8 Average excess fuel consumptions. Significant differ-
ences (pairwise t-test with Holm–Šidák correction, p<0.05) indi-
cated by an asterisk. Shaded region shows the distribution for
each condition, darker between the 25th and 75th percentiles.
Black dots show medians. ANOVA testing shows significance
across conditions (p=0.007).
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Similarly, simulations to check failure rates are more generally per-
formed after a solution has been decided upon, not during a single
designer’s rapid iteration through designs. Both the Margin and
Control conditions of our experiment put current practices on a
much faster timescale; caution should be taken equating these
results with current design practices. The optimization involved in
Margin, as well as the ability to control uncertainty parameters,
led to higher quality designs than those of Control participants,
though Margin participants were still able to find poor quality
designs far away from the Pareto frontier.
Judging just by what participants saw on their screen, the Control

case had an easier time reaching the reward regions. However, this
is due to the method in which uncertainty is incorporated into the
mathematical model—since the uncertain variables are directly
modified to be in their worst case of the uncertainty accounted
for, the performance given by the model is the performance under
worst case conditions. We presented this performance to partici-
pants to better simulate how designers would view each tool. To
be able to compare the underlying data however, we needed to
“nominalize” the data, which meant rerunning the model with opti-
mized fixed design parameters with uncertainty parameters set to
the nominal values used by the Control condition. This workflow
on the experimenter’s part implies the need for an automated func-
tionality to compare designs optimized for various conditions; prac-
titioners also noted the need to easily test performance on
“off-design” cases.
The Gamma Slider and Performance Slider conditions mimic two

ways designers could use robust optimization to explore the design
space, and the consistent quality of their Pareto frontiers implies that
the methods can produce a high likelihood of Pareto optimality
without requiring much skill. Given the mathematical formulation
of robust optimization, this is no surprise. A random sample of con-
ditions is an approximation of the bounds robust optimization is
designed to optimize for; the failure rate returned by the random
sample is a less accurate representation of how much uncertainty
is accounted for than the robust optimization’s own parameter
bounds. This turns the experiment into a game of finding uncer-
tainty parameters that overfit the controlled set of one hundred
random samples. A designer mimicking this process in practice
would set the bounds of both the Monte Carlo simulation and the
uncertainty parameters of robust optimization; however, a probabi-
listic simulation analysis does not make sense if the designer can
choose the space of uncertainty optimized for. Robust optimization
automates away the mathematical necessity of performing Monte
Carlo simulations over direct design parameters. In practice, we
would expect Monte Carlo simulations to still be used to provide
additional legitimacy to designs for stakeholders with less familiar-
ity with robust optimization practices, and for uncertain parameters
not representable within a convex model.
Robust optimization’s most apparent advantage becomes clearer

later in the design process—the expressivity it provides designers to
build models that are detailed mirrors of their project-specific con-
ceptions of uncertainty. However, this potential benefit would
require a change in how GPkit is used; while some designers
wanted to continuously update GPkit models as their designs pro-
ceeded past the conceptual stage, they felt little ability or incentive
to do so, as their coworkers usually trusted more complex “high-
fidelity” to be more legitimate.
Trust in GPkit models of various designs does need to be built;

not many designers would be willing to use the values determined
as optimal directly from a GPkit solve without first validating the
model in other software. However, late-stage GPkit models have
been able to accurately predict the performance of an airplane pro-
totype, such as with the Jungle Hawk Owl [36,37], whose designers
built a plane fully modeled in GPkit, and found their built perfor-
mance remarkably close to model estimates. However, to encourage
adoption of robust optimization in GPkit, improvements in design
quality must be evident even at early conceptual stages. This
study provides evidence that robust optimization can have a dra-
matic effect, even with a simple conceptual model.

6 Conclusion
This study provides evidence for the importance of accounting

for uncertainty early in the design process. A lack of uncertainty for-
mulation within a design model can require external, imperfect
metrics of uncertainty testing, such as Monte Carlo simulations,
and the iteration modeling process is thus less likely to produce
high quality designs. Simple uncertainty formulation within a
design model, such as multiplying a variable by a safety factor,
can create overly conservative designs or make worthwhile
designs appear infeasible. However, most designers do not know
alternative methods of accounting for uncertainty, or consider
those methods to be impractical for conceptual design.
Robust optimization provides stronger protections against uncer-

tainty than safety factors, making it difficult for even inexperienced
users to create non-robust designs. This is seen through the high
quality of almost all our experimental participants’ final designs
relative to the combined Pareto frontier. We also provide two con-
ceptualizations of uncertainty GPkit users could use robust optimi-
zation to represent. The first, represented by Performance Slider, is
optimizing for the largest scaled uncertainty, creating an airplane
that is as robust as possible for a particular performance. The
second, represented by Gamma Slider, is optimizing for perfor-
mance, creating an airplane that maintains a particular level of
robustness while spending little on fuel. GPkit users who already
consider uncertainty via Monte Carlo simulations of their designs
will find robust optimization essentially automates the function of
Monte Carlo simulation within it, reducing the necessity of
running additional simulations on designs.
The human-subjects experiment was a game for novices, and so

does not allow us to draw conclusions about how designers in prac-
tice might behave. However, even though robust optimization
uncertainty parameters were difficult to understand conceptually,
this barrier did not prevent novice participants from finding high
quality solutions. The experiment also provides questions for
future field studies: Do explicit formulations of uncertainty enable
better conversations about it during conceptual design? How do
multiple stakeholders interact with these tools and solutions to
reach an agreement? Do the benefits found in this study extend to
more complex solutions? How difficult is it for designers to transi-
tion from formulating uncertainty as safety factors to skillfully
using robust optimization? Answering these questions will allow
us to understand the potential of robust optimization as a method
for accounting for uncertainty.
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Appendix A: Questionnaire for Interviews
Questions were grouped into three broad categories:

(A) Background/General
(B) Integration/Communication
(C) Robustness

Questions were given approximately in this order, allowing for
flexibility given the natural flow of conversation.

(1) Tell me about the projects you are working on and your role
within them. (A)

(2) How and why did you start using GPkit? (A)
(3) Think about a project you did that could have used GPkit,

but didn’t.
(a) Why did the project not use GPkit? (A)
(b) How did you integrate and optimize your systems?

What tools did you use to integrate and optimize your
systems? (B)

(c) How long did the design process take? How many early
stage iterations (i.e. early simulations) did you go
through?Howmany late stage iterations (i.e.more detailed
simulations, built objects) did you go through? (C)

(d) How closely did early simulations match the final
object? (C)

(e) Howmany people were involved? Howwere they orga-
nized? (B)

(f) How did you evaluate the quality of your design during
the process? After it was complete? (C)

(4) Think about the last project you did with GPkit.
(a) What stages of the project did you use GPkit during?

(B)
(b) How did you use GPkit to integrate and optimize your

systems? What processes did GPkit replace, and which
ones did it not replace? (B)

(c) What tools did you use in addition to/before/after
GPkit? (B)

(d) How long did the design process take? How many early
stage iterations (i.e. early simulations) did you go
through? How many late stage iterations (i.e. more
detailed simulations, built objects) did you go
through? (C)

(e) How closely did early simulations match the final
object? (C)

(f) Howmany people were involved? Howwere they orga-
nized? (B)

(g) How did you evaluate the quality of your design during
the process? After it was complete? (C)

(5) Of the differences in the two projects we mentioned, which
ones were related to GPkit? (A)

(6) If you haven’t used GPkit in major projects, why? (A)
(7) What do you view as benefits of GPKit? (A)
(8) What do you find to be lacking in GPkit? What features

would you like to be added? (A)
(9) What qualities of a project do you find make it better suited

for GPkit? (A)
(10) How do you moderate uncertainty? (i.e. do you prioritize

accuracy in measurements of certain components versus
others?) (C)

(11) How do you encode uncertainty information into GPkit?
(C)

(12) How does your initially designed model translate into the
final built structure? What things change? How often are
you re-solving your model/modifying the design? (C)

Appendix B: Experimental UI

Fig. 9 Experimental UI. Screenshot of interface seen by participants of the human-subjects
experiment. The interface was creating using Jupyter Notebook, ipywidgets, Voila, and Plotly.
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