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This paper proposes a new methodology for physics-based aircraft multidisciplinary design optimization (MDO)

and sensitivity analysis. The proposed architecture uses signomial programming (SP), a type of difference-of-convex

optimization that is solved iteratively as a series of log-convexproblems.A requirement of SP is that all constraints and

objective functions must have explicit signomial formulas. The SP MDO architecture facilitates the low-cost

computation of optimal sensitivities through Lagrange duality. The specific example of commercial aircraft MDO is

considered. Using SP, a small-, medium-, and large-scale benchmark problem is solved 16, 39, and 26 times faster,

respectively, than Transport Aircraft SystemOptimization (TASOPT), a comparable and widely used aircraftMDO

tool. The SP solution times include computation of all optimal parameter and constraint sensitivities, a feature unique

to the presented architecture. The reliability of SP is demonstrated by converging a commercial aircraft MDO

problem for a number of different objective functions and evaluating both traditional and nontraditional aircraft

configurations.While the presented example is commercial aircraftMDO, the SPMDOarchitecture is applicable to a

range of engineering optimization problems.

Nomenclature

ARw = wing aspect ratio
bw = wing span
D = drag
L∕D = aircraft lift-to-drag ratio
F = thrust
Mmin = minimum cruise Mach number
ttotal = total mission flight time
Vne = never exceed speed
Wailerons = aileron weight
Wempty = aircraft empty weight
Wengine = engine weight
Wflaps = wing flap weight
Wftotal = total fuel weight
Wfuselage = fuselage weight
Wlg = landing gear weight
Wpayload = payload weight
Wslats = wing slat weight
Wtail = horizontal and vertical tail weight
Wskin = wing skin weight
Wwing = wing weight
Wwing box = wing box weight
�⋅�i = flight segment i quantity

I. Introduction

A KEY goal in conceptual engineering system design is to
understand tradeoffs between various design parameters,

system configurations, and mission objectives. Understanding the
Pareto frontier early on in the design process requires system-level
optimization across a range of possible system configurations

and missions. Performing this type of optimization has become
increasingly difficult due to the multimodal nature and complexity of
modern engineering systems. As noted by Martins and Lambe, a
variety of multidisciplinary design optimization (MDO) architec-
tures exist. However, there is still a need for new architectures that
exhibit fast convergence for medium and large scale problems [1].
One technique for improving computational efficiency is to solve

particular forms of optimization problems rather than general
nonlinear programs. Hoburg and Abbeel [2] successfully formulate a
basic aircraft design problem as a geometric program (GP),¶ which is
a type of convex optimization problem.GPswith thousands of design
variables can be solved on a personal laptop in just a few seconds.
Algorithms for solving GPs guarantee convergence to a global
optimum, and use Lagrange duality to compute parameter and
constraint sensitivitieswithminimal computational cost [3]. A caveat
of GP is that all physical relationships must be expressed in a
mathematical form compatible with GP. A number of physical
relationships fit the required form, and GP has been used to perform
engineering design analysis [4]. However, the restrictions on
constraint and objective functions limit GP in its level of fidelity.
This work introduces signomial programming (SP) as a new

methodology for medium-fidelity physics-based MDO and
sensitivity analysis. SPs, a specific type of difference-of-convex
programs, are nonconvex extensions of GPs. Restrictions on the form
of SP constraints are less stringent than the restrictions on GP
constraints. SPs have many of the advantages of GPs, such as their
relative speed compared with general nonlinear problems and low-
cost computation of optimal sensitivities. However, unlike GPs, SPs
provide no guarantee of global optimality. A detailed description of
GP and SP is provided in Sec. II.
The utility of this new architecture is demonstrated through the

solution of a series of commercial aircraftMDOproblems. Priorwork
has developed physics-based SP-compatible models for aircraft
wings, fuselages, horizontal tails, vertical tails, landing gear, and
turbofan engines [5,6]. These models, along with a mission profile,
have been combined to form a full-system aircraft MDO tool of
comparable fidelity to the widely used Transport Aircraft System
Optimization (TASOPT) [7]. Section IV demonstrates that the
presented methodology can model both different scales and
configurations of aircraft by optimizing a 737, 777, and D8.2, which
includes nontraditional features such as a double-bubble fuselage and
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boundary-layer ingestion [8]. A series of case studies are used to
illustrate the advantages of SP. In Sec. V.A, SP is shown to perform a
single-mission aircraft optimization 16 times faster, a two-mission
aircraft optimization 39 times faster, and a four-mission aircraft
optimization problem 26 times faster than TASOPT. The SP solution
times include computation of all optimal parameter and constraint
sensitivities, whereas the TASOPT solution times do not. SectionV.B
presents a sample sensitivity analysis and validates the accuracy of
sensitivities computed via Lagrange duality. Finally, the SP tool’s
ability to reliably converge models across a range of objective
functions is illustrated in Sec. V.C. The code used to generate
presented results is publicly available at https://github.com/
convexengineering/SPaircraft.

II. Optimization Formulation

All presented models are SPs that were constructed with GPkit [9]
and employ its built-in framework formultipoint optimization, which
is described in Sec. II.A. A detailed description of GP and SP is
provided in Secs. II.B and II.C, respectively. GPkit is an open source
Python package developed at MIT that enables the fast and intuitive
formulation of GPs and SPs. GPkit has a number of built-in heuristics
for solvingSPs via a series ofGPapproximations. Thiswork employs
the relaxed constants penalty function heuristic detailed in [5].
GPkit binds with open source and commercial primal-dual interior
point solvers to solve the individual GPs. The presented SPs were
solved with the commercially-available solver MOSEK [10]. Each
individual GP is solved all-at-once. The presented methodology is
stable enough that initial guesses are not required for any variables; at
the beginning of a SP solve, all variables are set to one.

A. Multipoint Optimization Formulation

Each individual GP is a nonhierarchical collection of every
constraint (or its local approximation) in the model. However, during
model development, a hierarchy of models, such as that in Fig. 1,
helps ensure that the appropriate constraining connections between
subsystems aremade.Many different modular decompositions of the
full-system model are possible, but the combination of two design
rules generally leads to a single obvious and highly reusable
decomposition.
The first rule is a strict maintenance of hierarchy: models can

reference only the variables of models that are at the same or lower
level of hierarchy (depicted in Fig. 1) than themselves. This rule is
useful in the design of any component-decomposed system such as
the SP aircraft model and helps determine when a constraint that
seems like part of a low-level subsystem is best considered in a
higher-level system.
The second rule is a separation of “sizing” and “performance”

variables into separate models. Sizing models contain all variables
and constraints that do not change between operating points, such as
component weights and dimensions. Performancemodels contain all
constraints and variables that change between operating points, such

as air speeds, lift coefficients, and fuel quantities. Sizing models
contain a pointer to their companion performance model. This model
separation allows the modeler to specify a scalar performance model
but create it in a “vectorized” environment that extends each variable
in the original scalar performance model across the vector of
operating points. For example, the constraint thrust that is greater
than or equal to drag could be written in a scalar performance model
as F ≥ D and then be vectorized across N operating points. After
vectorization, the original constraint F ≥ D becomes the N unique
constraints below.

F1 ≥ D1

F2 ≥ D2

..

.

FN ≥ DN

Figure 2 provides a visual representation of sizing and
performance models. The technique is not restricted to aerospace
applications and can be used for any multipoint optimization.
Vectorization allows the airplane design problem to be extended to a
fleet design problem with a single line of code. Together, these two
model development rules help specify simple submodels, making it
easier for modelers to collaborate and use models written by others.

B. Geometric Programming

Introduced in 1967 byDuffin et al. [11], a geometric program (GP)
is a type of constrained optimization problem that becomes convex
after a logarithmic change of variables. Modern interior point
methods allow a typical sparse GPwith tens of thousands of decision
variables and constraints to be solved in minutes on a desktop
computer [12]. These solvers do not require an initial guess and
guarantee convergence to a global optimum, assuming a feasible
solution exists. If a feasible solution does not exist, the solver will
return a certificate of infeasibility. These impressive properties are
possible because a GP’s objective and constraints consist of only
monomial and posynomial functions, which can be transformed into
convex functions in log space.
A monomial is a function of the form

m�u� � c
Yn
j�1

u
aj
j (1)

where aj ∈ R, c ∈ R�� and uj ∈ R��. An example of a monomial
is the common expression for lift, �1∕2�ρV2CLS. In this case,
u � �ρ; V; CL; S�, c � 1∕2, and a � �1; 2; 1; 1�.

Fig. 1 Variable and constraint hierarchy. Models can access attributes

of models lower than themselves in the hierarchy. Models that include
sizing variables are bolded, and models containing performance
variables are italicized.

Fig. 2 Aircraft model architecture.
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A posynomial is a function of the form

p�u� �
XK
k�1

ck
Yn
j�1

u
ajk
j (2)

where ajk ∈ R, ck ∈ R��, and uj ∈ R��. A posynomial is a sum of
monomials. Therefore, all monomials are one-term posynomials.
A GP minimizes a posynomial objective function subject to

monomial equality and posynomial inequality constraints. A GP
written in standard form is

minimize p0�u�
subject to pi�u� ≤ 1; i � 1; : : : ; np;

mi�u� � 1; i � 1; : : : ; nm

(3)

where pi are posynomial functions,mi are monomial functions, and
u ∈ Rn�� are the decision variables. Once a problem has been
formulated in the standard form of Eq. (3), it can be solved efficiently.
There are a number of techniques for formulating engineering

design problems as GPs [13]. With knowledge of how a problem
pressures design variables, many posynomial equalities can be
reformulated as posynomial inequalities that will be equivalent to the
equality at the optimum. For example, in an aircraft design problem
whose objective is to minimize fuel burn, the total aircraft weight
may be given by W total � W tail �Wfuselage �Wengine �Wpayload.
The heavier the aircraft is, the more fuel will be burned. Thus, the
objective and other constraints drive total weight to its minimum
value, and the non–GP-compatible posynomial equality relationship
can be relaxed into the GP-compatible posynomial inequality
Wtotal ≥ W tail �Wfuselage �Wengine �Wpayload. At the optimum, the
inequality constraint will be tight, meaning that the left- and right-
hand sides equal each other. The inequality constraint functions as an
equality constraint. GPkit [9] has a framework to confirm the
tightness of constraints relaxed in this way.
Other techniques tomake constraints GP compatible include using

variable transformations and Taylor approximations. Variable
transformations are used in the tail cone model from [5] and the
stagnation relations in Appendix B. Taylor approximations are used

in theGP-compatible Breguet range equation presented in [2] and the
structuralmodel inAppendixA.Additionally, empirical relations can
be used to formulate constraints using the methods described in [14].
An example of GP-compatible fits can be found in [5], where XFOIL
[15] data is used to generate a posynomial inequality constraint for
TASOPT C-series airfoil parasitic drag coefficient as a function of
wing thickness, lift coefficient, Reynolds number, andMach number.
The TASOPTC-series airfoils are representative ofmodern transonic
airfoils [7]. A detailed description of how to take rawdata and create a
GP-compatible fit can be found in [13].

C. Signomial Programming

Because GPs require a special mathematical form, it is not always
possible to formulate a design problem as a GP. This motivates the
introduction of signomials. Signomials have the same form as
posynomials:

s�u� �
XK
k�1

ck
Yn
j�1

u
ajk
j (4)

but the coefficients, ck ∈ R, can now be any (including nonpositive)
real numbers.
A signomial program (SP) is a generalization of a GP where the

inequality constraints can be composed of signomial constraints of
the form s�u� ≤ 0. The log transform of an SP is not a convex
optimization problem, but is a difference-of-convex optimization
problem that can be written in log-space as

minimize f0�x�
subject to fi�x� − gi�x� ≤ 0; i � 1; : : : ; m

(5)

where fi and gi are convex.
There are multiple algorithms that reliably solve signomial

programs to local optima [16,17]. A common solution heuristic,
referred to as difference-of-convex programming or the convex-
concave procedure, involves solving a sequence of GPs, where each
GP is a local approximation to the SP, until convergence occurs. The
introduction of even a single signomial constraint to anyGP turns the

a) Non-convex signomial inequality drag constraint b) Convex approximation about CL = 0.05

c) Convex approximation about CL = 0.20

Fig. 3 A signomial inequality constraint and GP approximations about two different points.
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GP into an SP, thus losing the guarantee of solution convergence to a
global optimum.Despite the possibility of convergence to a local, not
global, optimum, SP is a powerful tool. The convex approximation,
f̂�x�, to the nonconvex signomial in log-space, f�x� − g�x�, is
constructed such that it always satisfies

f̂�x� ≥ f�x� − g�x� ∀ x (6)

In other words, for each constraint, the feasible set of the convex

approximation f̂�x� ≤ 0 is a subset of the original SP’s feasible set,
f�x� − g�x� ≤ 0. This means that SP inequalities do not require a
trust region, removing the need for trust region parameter tuning and
making solving SPs substantially more reliable than solving general
nonlinear programs. Figure 3, in which a series of log-convex
(GP-compatible) constraints approximate a nonconvex parabolic
drag polar in log space, illustrates this property.
Signomial equality constraints can be approximatedwithmonomials

using the methods described in [18]. As shown in Fig. 4, the monomial
approximation of a signomial equality constraint does not fully lie
within the original constraint’s feasible region. Consequently,
signomial equalities are the least desirable type of constraint.

III. Aircraft Model Overview

The full aircraft model is a set of coupled subsystem models.
Individual submodels are linked through shared variables. For
example, thewing structuralmodel depends on engineweight and the
fuselage structural model depends on maximum tail aerodynamic
loads. A full description of subsystem variable linking can be found
in [5]. A qualitative description of all submodels is provided in the
following subsections.

A. Fuselage

The fuselage model is adapted from the model in [5], and borrows
heavily from TASOPT [7]. Modifications, described in Appendix A,
were made to support double-bubble fuselages in addition to
traditional tube fuselages. Fuselage sizing constraints include
pressure loads, y-axis and z-axis bending moments, and floor loads.

B. Engine

The SP model uses the full 1D core� fan flow path simulation
turbofan engine model developed by York et al. [6]. An additional
boundary-layer ingestion model used for the SP D8.2 is described in
Appendix B. The nacelle drag model in [7] is adopted with one
modification: the nacelle skin friction coefficient is assumed to be
that of a turbulent flat plate.

C. Wing

The wing model is taken directly from [5]. The model includes a
physics-based structural model, geometry-based induced drag and

lift curve slope estimation, drag fits tomodern transonic airfoils, and a
fuel tank volume model.

D. Vertical and Horizontal Tails

This work leverages the tail models in [5]. The vertical tail is sized
for both takeoff engine out and aminimum required yaw acceleration
rate at flare.
The horizontal tail is sized to provide a minimum static margin

at the forward and aft CG locations (this work includes the CG
model in [5]). The SP model can implement both pi-tails and
conventional tails.
The vertical tail surfaces use the same structural model as thewing.

To facilitate modeling pi-tails, the horizontal tail has a unique
structural model described in Appendix C.

E. Landing Gear

The landing gear model is taken directly from [5]. The model
includes aircraft geometry constraints as well as taxi and landing
load cases.

F. Mission Profile

The mission profile is described in Appendix D. It includes climb
and cruise segments, both of which can be discretized into an
arbitrary number of subsegments. For the purposes of this paper,
three climb and two cruise segments were used. Climb performance
is computed using an excess power formulation. For each cruise
segment, the optimizer can either fly level or execute a cruise climb
(cruise climb rate, cruise altitude, and lift coefficient are optimized).

G. Atmosphere

The atmosphere model is taken directly from [5].

IV. Example Solutions

The SP MDO tool was used to optimize three different aircraft
architectures: a single aisle airliner similar to a 737-800, a wide-body
airliner similar to a 777-300ER, and theD8.2 [8].Mission parameters
are presented in Table 1. In all cases, the objective function was total
fuel burn. Constant input parameters were selected to match
TASOPT input parameters for the example files distributed with
TASOPT version 2.16. SP model results are presented alongside
TASOPT results in Tables 2–4. Differences in the SP and TASOPT
subsystem models, which manifest as solution differences, are
discussed in [5,6] and Appendices A–D. A few of the notable
differences include the SP model’s optimization of the engine on-
design point versus the predefinition of the on-design point in
TASOPT, the SP model’s use of a physics- and geometry-based
landing gear model versus the fractional weights used in TASOPT,

Fig. 4 The signomial equality constraint CD � f�CL� and its
approximation.

Table 1 737-800, D8.2, and 777-300ER model
mission parameters

Quantity 737-800 D8.2 777-300ER

Range, nm 3,000 3,000 6,000
Number of passengers 180 180 450
Minimum cruise Mach 0.80 0.72 0.84
Payload weight, lbf 38,716 38,716 103,541

Table 2 Results for the SP and
TASOPT 737-800 models

Quantity SP TASOPT

Takeoff weight, lbf 166,504 166,502
Required fuel, lbf 41,847 45,057
Empty weight, lbf 85,956 82,729.6
Wing span, ft 117.5 113.6
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and the SP model’s increased optimization of the flight profile
relative to TASOPT.
The SP aircraft optimization tool was integrated with OpenVSP

[19] to facilitate output visualization. Figures 5–7 show selected
VSP output for the presented models. Figure 8 presents the SP
mission profile overlaid with the TASOPT mission profile for each
aircraft. The SP model optimizes cruise climb rates and cruise lift
coefficients for each flight segment, whereas TASOPT computes a
cruise climb gradient to maintain a constant Mach number and lift
coefficient. Objective function convergence plots are provided in
Appendix E.

V. Case Studies

A. Solution Time Comparison

Solution times for the SP model and TASOPT are presented in
Table 5. It is important to note the SP solution time includes the
computation of all optimal parameter and constraint sensitivities,
which are discussed in the next section. TASOPT uses a traditional
gradient-based optimization method [7]. The two-mission optimiza-
tion consists of optimizing a single aircraft to fly both a 3000 and a
2000 nm mission, whereas the four-mission optimization consists of
optimizing a single aircraft to fly a 3000, 2500, 2000, and 1000 nm
mission. In all cases, total fuel burn was the objective, and the payload
of the 737 in Sec. IV was used. All models were solved on a laptop
computer with a 2.5 GHz Intel Core i7 processor and 16 GB of
1600 MHz DDR3 RAM.
The SP model solves 16 times faster than TASOPT for the single-

mission case, 39 times faster than TASOPT for the two-mission
case, and 26 times faster than TASOPT for the four-mission case.
The SPmodel experiences a 6.4 times slow downwhenmoving from
the single- to four-mission solve, whereas TASOPT experiences a
10.2 times slow down. This suggests that the SP formulation scales
better to large problems than traditional gradient-based optimization
formulations.

B. Sensitivity Analysis

The SP model computes the sensitivity of each model parameter
and constraint. Sensitivities are all local and computed about the
optimum found in the last GP approximation of the SP. Equation (7)
is the definition of parameter sensitivity, whereas Eq. (8) is the
definition of constraint sensitivity [16]. Sensitivities represent the
partial derivative of the computed optimum with respect to
perturbations in constraints or model parameters.

Table 4 Results for the SP and
TASOPT 777-300ER models

Quantity SP TASOPT

Takeoff weight, lbf 581,113 625,008
Required fuel, lbf 204,325 212,236
Empty weight, lbf 271,288 309,230
Wing span, ft 189.8 197.7

Fig. 5 SP 737 VSP outputs.

Table 3 Results for the SP and
TASOPT D8.2 models

Quantity SP TASOPT

Takeoff weight, lbf 143,421 134,758
Required fuel, lbf 27,529 26,959
Empty weight, lbf 77,129 69,084
Wing span, ft 140.0 140.0
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Fig. 7 SP 777 VSP output.

Fig. 6 SP D8.2 VSP output.
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Parameter Sensitivity � Objective-Function Percent Change

Parameter Percent Change
(7)

Constraint Sensitivity � Objective-Function Percent Change

Percent Change InConstraint Tightness

(8)

GPkit computes sensitivities via Lagrange duality using the
methods in [3,12]. Modern GP solvers that use primal-dual interior
pointmethods, such asMosek [10], determine the optimal primal and
dual variables simultaneously (so long as both problems are feasible).
Constraint sensitivities are simply the value of the optimal dual
variables. Parameter sensitivities are equal to the dot product of the
optimal dual variables and the parameter’s exponents summed over
all posynomial and signomial constraints containing the parameter.
Thus, constraint sensitivities are determined for free. Parameter

sensitivities only require the sum of a dot product. No finite
differences or additional model evaluations are required.
Sensitivities are useful in engineering design for two reasons. The

first is to determine which areas of a physical design should be
improved. For example, if the sensitivity to the engine burner
pressure ratio (a fixed parameter) is large in magnitude, it is
advantageous to focus effort on increasing the engine burner pressure
ratio in order to improve the objective. Sensitivities are also a useful
guide formodel development. If the sensitivity to a fixed parameter is
high, then it is important to either know the value of that parameter
with a high degree of certainty or replace the parameter with a more
detailed model. However, if the sensitivity of a fixed parameter is
low, variations in the value of the parameter are unlikely to have a
large effect on the model’s solution. Constraint sensitivities can be
used to gain intuition about the sensitivity of the objective function
to design variables in specific constraints. Consider a constraint such
as Wwing ≥ Wwingbox �Wskin �Wflaps �Wslats �Wailerons, where

a) 737 mission profile b) 777 mission profile

c) D8.2 mission profile. The SP D8.2 initially has a higher cruise
climb rate than TASOPT

Fig. 8 SP and TASOPT mission profiles for the 737, 777, and D8.2 models presented in Sec. IV.

Table 5 Comparison of SP and TASOPT solution times for different 737-800 models

Model SP solve time TASOPT solve time Number of variables in SP model

Pure analysis N/A <1 s N/A
Single point optimization 7.66 s 2 min 4 s 1902
Two mission optimization 20.1 s 12 min 58 s 3133
Four mission optimization 49.3 s 21 min 5 s 5593

The SP model experiences a 6.4 times slow down when moving from the single- to four-mission solve, whereas
TASOPT experiences a 10.2 times slow down.
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wing box weight, skin weight, and so on, are set by independent
submodels. If the sensitivity to this constraint is high, then the model
is sensitive to wing weight and it may be advantageous to decrease
wing weight. However, if the sensitivity to the constraint is low, the
model is not sensitive to wing weight and the benefit of decreasing
wing weight will be low. Table 6 presents selected sensitivity
information for the optimal 737 model presented in Sec. IV. Table 7
presents the same parameter sensitivities for the D8.2 model
discussed in Sec. IV.
The accuracy of GPkit computed sensitivities is demonstrated by

comparing them to sensitivities found through finite differencing.
The 737 model was optimized for minimum fuel burn twice, once
with a range of 3000 nm and once with a range of 2995 nm. The
3000 nm fuel burn was 41,847 pounds, whereas the 2995 nm fuel
burn was 41,757 pounds. The sensitivity to mission range was
computed by dividing the percent change in fuel burn by the percent
change in range. This finite difference method yields a sensitivity of
1.290. By solving the SP model, GPkit determines the sensitivity to
range to be 1.266 for the 3000 nm range and 1.267 for the 2995 nm
range. The difference in the sensitivity values is partially attributable
to solver convergence criteria. The iterative SP solution procedure is
terminated when the relative change in the value of the objective for
successive GP solves falls beneath a preset tolerance. For the
3000 nm mission, decreasing this tolerance from 1e–2 to 1e–6
decreases optimal fuel burn by 0.7% and increases the sensitivity to
range to 1.274. As the convergence tolerance is moved closer to zero,
the GPkit computed sensitivity will converge to the exact local

derivative, similar to how finite difference sensitivities converge as
the difference shrinks.
It is interesting to analyze how sensitivities change as parameters

vary. An example is presented in Fig. 9. As the max allowed turbine
inlet temperature increases, the engine’s power density increases and
weight decreases. As engine weight becomes a smaller proportion of
total aircraft weight, further reductions in engine weight have
decreasing returns with respect to overall system performance.
Hence, the sensitivity to engine system weight decreases as max
allowed turbine inlet temperature increases.

C. Model Robustness Across Objective Functions

SPs are bags of constraints that are solved all at once via a convex-
concave procedure [16,17]. In the SP model, there are no parameter
tuning or weight convergence loops and the naive initial guess of one
is used for all variables. These factors, along with the mathematically
favorable structure of SPs, allow the model solve reliably and
efficiently across a variety of objective functions. Table 8 presents
key design variables obtained when solving the optimal 737 model
for a variety of objective functions. All results are normalized by the
result obtained when the objective function is total fuel burn. For
example, the value of total fuel burn (Wftotal ) when the objective is
engine weight is listed as 1.4. This means that the aircraft produced
when optimizing for engineweight burns 1.4 timesmore fuel than the
aircraft produced when optimizing for total fuel burn. Table 8 does
not present an exhaustive set of objectives for which the model
converges. The SP model can be solved for any weighted sum of
objective functions in Table 8 and supports net present value models.
This capability enables aircraft performance to be assessed from the
perspective of multiple stakeholders, such as operators and
manufacturers.

VI. Conclusions

This paper has proposed performing physics-based multidiscipli-
nary design optimization (MDO) and sensitivity analysis via
signomial programming (SP). Through a series of aircraft MDO case

Table 7 Selected sensitivities for the optimal

D8.2 presented in Sec. IV

Parameter Sensitivity

Avg. passenger weight (incl. payload) 0.72
Wing max allowed tensile stress −0.26
Range 1.1
Vne 0.28
Reserve fuel fraction 0.21
Mmin 0.21
Max fuselage skin stress −0.04
Engine burner efficiency −1.2
Engine burner pressure ratio −0.39

Max Turbine Inlet Temp [K]
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Fig. 9 Sensitivity to engine system weight versus max allowed turbine
inlet temperature (Tt4.1 ).

Table 8 Key design variables for a 737 class aircraft optimized for a variety of objective functions

Objective Wftotal Wempty bw ARw Wengine ttotal Initial cruise L∕D Wlg

Wftotal 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Wempty 1.52 0.72 0.72 0.56 0.70 0.99 0.85 0.97
bw 2.2 1.0 0.60 0.29 1.4 0.97 0.58 1.58
ARw 4.2 1.61 0.71 0.23 2.4 0.96 0.53 2.4
Wengine 1.4 0.78 0.92 0.94 0.52 1.0 1.1 0.98
ttotal 3.5 1.3 1.0 0.60 1.7 0.89 0.84 2.2
Initial cruise 1∕�L∕D� 1.5 0.98 1.0 0.94 0.61 1.0 1.2 1.2
Wlg 1.4 0.87 0.93 0.74 0.87 0.99 0.99 0.67

Table 6 Selected sensitivities for the optimal

737 presented in Sec. IV

Parameter Sensitivity

Avg. passenger weight (incl. payload) 0.84
Wing max allowed tensile stress −0.30
Range 1.3
Vne 0.30
Reserve fuel fraction 0.26
Mmin 0.46
Max fuselage skin stress −0.035
Engine burner efficiency −1.3
Engine burner pressure ratio −0.51
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studies, benefits of the SP architecture are presented. SP is used to
solve a single-mission, two-mission, and four-mission commercial
aircraft MDO problem and perform a sensitivity analysis 16, 39,
and 26 times faster, respectively, than Transport Aircraft System
Optimization, a comparable existing tool that performs aircraft
optimization with no sensitivity analysis. The ability to compute
accurate optimal parameter and constraint sensitivitieswithLagrange
duality is demonstrated in an example sensitivity analysis. Finally,
the reliability of SP is illustrated by the convergence of a single
aircraft MDO problem for eight unique objectives. The presented
MDO architecture can be applied to any optimization problemwhere
constraints can be either written or approximated in an explicit
signomial form. Continued research into optimization via GP and SP
will likely unearth additional unique capabilities and advantages of
these methods.

Appendix A: Fuselage Modifications

Modifications to the fuselage model in [5] were made to support
double-bubble fuselages in addition to conventional fuselages.

A.1. Fuselage Terminology

Adb = web cross-sectional area
Afuse = fuselage cross-sectional area
Ihshell = shell horizontal bending inertia
Ivshell = shell vertical bending inertia
Mr = root moment per vertical tail root chord
Rfuse = fuselage radius
Sbulk = bulkhead surface area
Snose = nose surface area
Vcone = cone skin volume
Vdb = web volume
Winsul = insulation material weight
W 0 0

insul = weight/area density of insulation material
Wshell = shell weight
Wskin = skin weight
Wweb = web weight
ΔPover = cabin overpressure
ΔRfuse = fuselage extension height
λcone = tailcone radius taper ratio
ρskin = skin density
σskin = max allowable skin stress
τcone = shear stress in tail cone
θdb = double-bubble fuselage joining angle
crootvt = vertical tail root chord
ffadd = fractional added weight of local reinforcements
fframe = fractional frame weight
fstring = fractional stringer weight
hdb = web half-height
hfuse = fuselage height
lcone = cone length
lshell = shell length
tdb = web thickness
tshell = shell thickness
tskin = skin thickness
wdb = double-bubble added half-width
wfuse = fuselage half-width

A.2. Additional Constraints

Figure A1 presents a cross-sectional view of the double-bubble
(DB) fuselage. The added half-floor width due to the double-bubble
structure,wdb, is approximated with a first-order Taylor expansion of
the sine function.

θdb �
wdb

Rfuse

(A1)

A central tension web is added to account for the pressure forces in
the fuselage center section. The web thickness depends on the

internal pressure and the added floor half-width.

tdb � 2
ΔPoverwdb

σskin
(A2)

The half-height of the web is lower bounded with a second-order
Taylor expansion of the cosine function.

−0.5Rfuseθ
2
db � Rfuse ≤ hdb (A3)

The half-width of the fuselage is incremented by the half-width of
the central fuselage section.

Rfuse � wdb ≥ wfuse (A4)

A fuselage extension height,ΔRfuse, augments the fuselage height
and is constrained with a signomial equality constraint.

hfuse � 0.5ΔRfuse � Rfuse (A5)

ΔRfuse contributes to the shear web cross-sectional area and total
material volume.

Adb ≥ 2hdbtdb � ΔRfusetdb (A6)

Vdb � Adblshell (A7)

Web weight Wdb is included in the total shell weight.

Wdb � Vdbρsking (A8)

Wshell ≥ Wdb �Wskin �Wskinffadd �Wskinfframe �Wskinfstring

(A9)

The skin cross-sectional area, skin and bulkhead surface areas, and
the tail cone volume are modified due to changing external geometry.

Askin ≥ 2ΔRfusetskin � 4Rfuseθdbtskin � 2πRfusetskin (A10)

Snose ≥ 4Rfuse
2θdb � 2πRfuse

2 (A11)

Sbulk ≥ 4Rfuse
2θdb � 2πRfuse

2 (A12)

Vcone ≥
Mrcrootvt

�1� λcone�τcone
π � 2θdb
π � 4θdb

lcone
Rfuse

(A13)

The cross-sectional area of the fuselage, used for the calculation of
cabin volume, is lower bounded as follows.

Afuse ≥ −Rfuse
2θdb

3 � 2RfuseΔRfuse � πRfuse
2 � 4Rfuse

2θdb (A14)

The insulation weight constraint is incremented due to the
increased surface area of the fuselage.

Fig. A1 Internal double-bubble fuselage dimensions [7].
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W insul ≥ W 0 0
insul�1.1π � 2θdb�Rfuselshell � 0.55�Snose � Sbulk�

(A15)

The bending model, shown in Fig. A2 and defined in [5], is
modified due to the double-bubble geometry and shear web, which
provides additional bending reinforcement. These differences are
captured in the bending area moments of inertia Ihshell and Ivshell.

Ihshell ≤
�
�π � 4θdb�R2

fuse � 8

�
1 −

θ2db
2

��
ΔRfuse

2

�
Rfuse

� �2π � 4θdb�
�
ΔRfuse

2

�
2
�
Rfusetshell �

2

3

�
hdb �

ΔRfuse

2

�
3

tdb

(A16)

Ivshell ≤ �πR2
fuse � 8wdbRfuse � �2π � 4θdb�w2

db�Rfusetshell (A17)

With the aforementionedmodifications to the constraints from [5],
the SP aircraft model can optimize both conventional tube and
double-bubble fuselages, with the fuselage joint angle parameter θdb
adjusting the geometry.

Appendix B: Boundary-Layer Ingestion

A boundary-layer ingestion (BLI) model is required to model the
D8.2. The D8.2 engine configuration is illustrated in Fig. B1. As
noted by Hall et al. [20], BLI on the D8.2 results in a reduction in
required propulsor mechanical power of 9%. Three percent of the
power savings comes from reduced jet dissipation, whereas the
remainder comes from a roughly 3% increase in propulsive efficiency
and decreased airframe dissipation.

B.1. BLI Terminology

D = drag
F = engine thrust

fBLI = boundary-layer ingestion fraction
fBLIP = BLI-induced engine inlet stagnation pressure loss

factor
fBLIV = BLI-induced engine inlet velocity loss factor
fwake = wake dissipation fraction
Mmin = minimum cruise Mach number
P = pressure
Φ = dissipation rate
ρ = density
u = engine working fluid velocity
�⋅� : : : 0 = free stream quantity
�⋅� : : : 6 = core exhaust quantity
�⋅� : : : 8 = fan exhaust quantity
�⋅� : : : atm = ambient atmospheric quantity
�⋅� : : : t = stagnation quantity

B.2. Fuselage Dissipation Model

The reduction in jet dissipation is modeled with a drag reduction
factor, δ. Following Hall’s [20] analysis, it is assumed that the
propulsor ingests 40%of the fuselage boundary layer (fBLI � 0.4). It
is further assumed that one third of total dissipation (Φ) is surface
dissipation (Φsurf). Thewake dissipation fraction, fwake, is defined by
Eq. (B1) and assumed equal to 0.08. After noting Φ � DV∞, this
analysis yields Eqs. (B2) and (B3).

fwake �
Φwake

Φwake �Φsurf

(B1)

δ � fBLI � 0.33 � 0.08 (B2)

Dtotal � δ�Dinduced �Dairframe� (B3)

B.3. Engine Boundary-Layer Ingestion

BLI engines ingest air with lower average velocity, and in turn
lower stagnation pressure, than free stream air. Three constraints
from [6] were modified to account for BLI. Engine inlet stagnation
pressure was reduced by the factor fBLIP. Note that fBLIP represents
the average drop in stagnation pressure across the entire inlet.
Following [6], Z0 replaces the non–GP-compatible expression 1�
��γ − 1�∕2��M0�2 in stagnation relations.

Fig. A2 TASOPT fuselage bending models [7]. The top graph shows the bending load distribution on the fuselage, whereas the bottom graph shows the

area moment of inertia distribution.

Fig. B1 Cartoon illustratingboundary-layer growthonaBLI-equipped
aircraft similar to the D8.2.

10 Article in Advance / YORK ETAL.

D
ow

nl
oa

de
d 

by
 M

ar
tin

 Y
or

k 
on

 S
ep

te
m

be
r 

21
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

70
20

 



Pt0 � fBLIPPatmZ0 (B4)

Thrust is equal to the working fluid’s rate of momentum change.
The factor fBLIV was introduced to fan and core thrust constraints to
account for the decrease in average free stream velocity. Again, fBLIV
is the average velocity drop across the entire fan.

F8

α _mcore

� fBLIV u0 ≤ u8 (B5)

F6

�fo _mcore

� fBLIV u0 ≤ u6 (B6)

Determining fBLIP and fBLIV can be difficult. As of now, there are
no GP- or SP-compatible boundary-layer models, and so either fBLIP
or fBLIV must be estimated. Using the experimental results presented
by Hall et al. [21] fBLIV was estimated to be 0.0727. fBLIP was then
determined using Eq. (B7).

fBLIP � Patm � ρatm�fBLIVMmina�2
Patm � ρatm�Mmina�2

(B7)

Finally, it is important to note that BLI fan distortion effects will
decrease fan efficiency to approximately 90% [22].

Appendix C: Horizontal Tail Structural Model
Modifications

An update to the structural model in [5] was required to accurately
model the bending and shear loads on horizontal pi-tails. This section
derives and presents a new set of constraints, which are compatible
with both conventional tail and pi-tail architectures.

C.1. Assumptions

1) The lift per unit span is proportional to local chord.
2) The horizontal tail has a constant taper ratio.
3) The horizontal and vertical tail joint is a fuselage width away

from the centerline of the aircraft.
4) The horizontal and vertical tail interface is a pin joint. Therefore,

the joint does not exert a moment on the horizontal tail.
5) The shear and moment distributions on the horizontal tail are

linearized.
The pin-joint assumption ensures that the vertical tail structural

constraints do not need to be modified for the pi-tail configuration.

C.2. Sample FreeBodyDiagramandLoadDistributions

With the aforementioned assumptions, the free body diagram of
the pi-tail is shown at the top of Fig. C1.
Shear and moment diagrams are presented in Figs. C2 and C3,

respectively. The diagrams include both the distributed lift loads
(green arrows in Fig. C1) and the point loads of imposed on the pin
joints by the vertical tails.

C.3. Horizontal Tail Terminology

Icap = nondimensional spar cap area moment of inertia
Lht = horizontal tail downforce
Lhtmax

= maximum horizontal tail downforce
Lhtrect

= rectangular horizontal tail load
Lhtrectout

= rectangular horizontal tail load outboard
Lhttri

= triangular horizontal tail load
Lhttriout

= triangular horizontal tail load outboard
Lshear = maximum shear load at pin-joint
Mr = moment per chord at horizontal tail root
Mrout = moment per chord at pin-joint
Nlift = horizontal tail loading multiplier
Sht = horizontal tail area
Wcap = weight of spar caps
Wstruct = horizontal tail wingbox weight

Fig. C1 Free body diagram of the forces on the horizontal tail. The

distributed lift force, which is assumed to be proportional to local chord,
is partitioned into triangular and rectangular components.

Fig. C2 Shear diagram of the pi-tail. The curved lines show the actual
loading, and the straight lines show the conservative assumed load
distribution.

Fig. C3 Moment diagramof the pi-tail. The curved lines show the actual
loading, and the straight lines show the conservative assumed load
distribution.
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Wweb = weight of shear web
λht = horizontal tail taper ratio
ν = dummy variable, �t2 � t� 1�∕�t� 1�2
πM−fac = pi-tail bending structural factor
ρcap = density of spar cap material
ρweb = density of shear web material
σmax;shear = allowable shear stress
σmax = allowable tensile stress
τht = horizontal tail thickness/chord ratio
bht = horizontal tail span
bhtout = horizontal tail outboard half-span
cattach = horizontal tail chord at the pin-joint
crootht = horizontal tail root chord
ctipht = horizontal tail tip chord
g = gravitational acceleration
qht = substituted variable, 1� taper
rh = fractional wing thickness at spar web
tcap = non-dim. spar cap thickness
tweb = non-dim. shear web thickness
w = wingbox width-to-chord ratio
wfuse = fuselage half-width

C.4. Load Derivation

Lhtrect
is defined to be half the lift generated by the rectangular

section of the wing (the rectangle in the left half of Fig. C1).

Lhtrect
≥
Lhtmax

ctiphtbht
2Sht

(C1)

Similarly, Lhttri
is defined to be half the lift generated by the

triangular section of the wing (the triangle in the left half of Fig. C1).

Lhttri
≥
Lhtmax

�1 − λht�croothtbht
4Sht

(C2)

After defining the horizontal tail half-span outboard of the pin joint
(bhtout ), the outboard components of the lift loads can be computed
with respect to Lhtrect

and Lhttri
. The outboard loads are shown in the

right half of Fig. C1.

bhtout ≥ 0.5bht −wfuse (C3)

Lhttriout
≥ Lhttri

bhtout
�0.5bht�2

(C4)

Lhtrectout
≥ Lhtrect

bhtout
0.5bht

(C5)

The horizontal-vertical tail pin joint is assumed to be exactly at
wfuse. This is a conservative estimate. In most pi-tail configurations
the vertical tails are canted outward. The local chord at the pin joint is
constrained with the following monomial equality.

cattach �
bhtλhtcrootht
2wfuse

(C6)

The maximum moment at the joint is determined by summing the
bending moment contributions from loads outboard of the joint.

Mroutcattach ≥ Lhtrectout

1

2
bhtout � Lhttriout

1

3
bhtout (C7)

The maximum shear at the joint is the sum of the outboard shear
loads. The maximum root moment is the sum of the bending loads
from lift and the pin-joint load.

Lshear ≥ Lhtrectout
� Lhttriout

(C8)

Mrcrootht ≥ Lhtrect

1

4
bht � Lhttri

1

6
bht −

1

2
Lhtmax

wfuse (C9)

Finally, the wingtip moment is set equal to zero with a signomial
equality constraint.

bht
4

Lhtrect
� bht

3
Lhttri

� bhtout
Lhtmax

2
(C10)

C.5. Structural Sizing

Equations from [2] for wing structural sizing were adapted using a
linearization of the moment and shear load distributions from
Appendix C2. The constraints can be applied to both conventional
and pi-tails.

0.92wτhtt
2
cap � Icap ≤

0.922

2
wτ2httcap (C11)

8 ≥ NliftMrout�ARht�q2ht
τht

ShtIcapσmax

(C12)

12 ≥
2LshearNliftq

2

τhtStwebσmax−shear
(C13)

The changes to the model in [2] are as follows:
1) In the shear constraint replacingLhtmax

with 2Lshear. This is done
because the shear loads for the pi-tail are different from themaximum
lift loads for the conventional tail.
2) Replacing Mr withMrout , the moment per unit chord at the pin

joint. For a pi-tail, maximum bending loads occur at the pin joint.
The linearization of the shear and bending load distributions

simplifies the derivation of the structural web and cap weights. Shear
web sizing relies on the assumption that the maximum shear (Lshear)
occurs at the pin-joint and the weight of the shear web of the pi-tail
under Lshear is equal to the shear web weight of a conventional tail
subjected to the same maximum shear load at its root. This is a
conservative approximation, the load distribution implied by this
assumption (shown in yellow in Fig. C2) has a larger internal area
than the actual load distribution. Intuitively, the Lshear for a pi-tail is
strictly smaller than theLshear, a conventional tail of the same size and
loading. The pi-tail more efficient in shear.
The cap weight of the pi-tail is determined by scaling the cap

weight of a conventional tail with the samegeometry as the pi-tail and
a root moment ofMroutcattach. The scaling factor, πM−fac, is the ratio of
the total shaded bending moment area in Fig. C3 to the sum of the
outboard shaded areas multiplied by the ratio of the outboard half-
span to the total half-span.

πM−fac ≥
��1∕2��Mroutcattach �Mrcrootht �wfuse

�1∕2�Mroutcattachbhtout
� 1.0

�
bhtout
0.5bht

(C14)

Given the calculated loads and structural factors, the bending
material and shear web weight can be calculated.

Wcap ≥
πM−fac8ρcapgwtcapS

1.5
ht ν

3AR0.5
ht

(C15)

Wweb ≥
8ρwebgrhτhttwebS

1.5
ht ν

3AR0.5
ht

(C16)

Wstruct ≥ Wweb �Wcap (C17)

The value for tcap is notional in the derivation above. Rather than
being the spar cap thickness of a pi-tail, it is the spar cap thickness
required for a conventional tail of the same geometry and a root
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moment (Mroutcattach) as a pi-tail. With a similar reasoning as for the
shear loads, πM−factcap for a pi-tail is strictly smaller than the tcap for a
conventional tail of the same geometry and loading, making the pi-
tail more efficient in bending than a traditional tail.

Appendix D: Mission Profile

The mission profile includes weight, drag, and altitude build up
constraints as well as a series of aircraft performance constraints. The
mission profile can be discretized into an arbitrary number of climb
and cruise segments. The profile allows for the possibility of a cruise
climb. The descent portion of the flightwas neglected due to the small
percent of mission time and fuel burn it encompasses. Neglecting
descent results in a slight overestimation of total mission fuel burn.

D.1. Mission Profile Terminology

a = speed of sound
D = total aircraft drag
Dcomponents = drag on aircraft subsystems
Dinduced = induced drag
Δh = altitude change
F = engine thrust
ffuelres = reserve fuel fraction
hcruise;min = minimum cruise altitude
L = sum of wing and fuselage lift
Lht = horizontal tail down force
L∕D = aircraft lift-to-drag ratio
M = Mach number
Mmin = minimum cruise Mach number
Neng = aircraft’s number of engines
θ = climb angle
h = altitude
Pexcess = excess power
R = downrange distance covered
Rreq = total required range
RC = rate of climb
t = flight segment duration
tclimb;max = max allowed time to climb
TSFC = thrust specific fuel consumption
V = aircraft speed
W = takeoff weight
Wbuoy = buoyancy force
Wavg = average flight segment aircraft weight
Wdry = aircraft dry weight
Wend = aircraft flight segment end weight
Wengine = engine weight
Wfuel = flight segment fuel weight burned
Wfuse = fuselage weight
Wht = horizontal tail weight
Wlg = landing gear weight
Wmisc = miscellaneous system weight
Wpayload = payload weight
Wfprimary

= total fuel weight less reserves
Wfueltotal

= total fuel weight
Wstart = aircraft flight segment start weight
Wvt = vertical tail weight
Wwing = wing weight
�⋅�0 : : : i : : : N = flight segment i quantity

D.2. Weight and Drag Build Ups

Downward optimization pressure on weight and drag allows basic
posynomial weight and drag build ups to be used.

Di ≥
X

Dcomponentsi
�Dinducedi

(D1)

Wavgi
is the geometric mean of a segments start and end weight.

Average weight is used instead of either the segment start or end
weight. This increases model accuracy and stability.

Wdry ≥ Wwing �Wfuse �Wvt �Wht �W lg �Weng �Wmisc

(D2)

XN
i�1

Wfueli
≤ Wfprimary

(D3)

W ≥ Wdry �Wpayload � ffuelresWfprimary
(D4)

Wstarti
≥ Wendi

�
Xi

n�1

Wfueln
(D5)

Wstart0
� W (D6)

WendN
≥ Wdry �Wpayload � ffuelresWfprimary

(D7)

Wstarti�1
� Wendi

(D8)

Wavgi
≥

������������������������
Wstarti

Wendi

p �Wbuoyi
(D9)

D.3. General Performance Constraints

The sum of segment ranges is constrained to be greater than or
equal to the required range.

XN
i�1

Ri ≥ Rreq (D10)

Segment fuel burn is a function ofTSFC, thrust, and segment flight
time.

Wfueli
� NengTSFCitiFi (D11)

Altitude change during each segment is a function of climb rate and
total segment time. Equation (D13) uses a small angle approximation
to compute the downrange distance covered during each segment.

Δhi � tiRCi (D12)

tiVi � Rangei (D13)

Standard lift to drag and Mach number definitions are used.

Mi �
Vi

ai
(D14)

�
L

D

�
i

� Wavgi

Di

(D15)

D.4. Climb Performance Constraints

Climb rates are computed with an excess power formulation [23].
During the first climb segment, the climb rate is constrained to be
greater than 2500 ft∕min. For all remaining climb segments, the
climb rate is constrained to be greater than 500 ft∕min. The climb
angle, θ, is set using a small angle approximation.

Pexcess � ViDi ≤ ViNengFi (D16)

RCi �
Pexcess

Wavgi

(D17)
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θiVi � RCi (D18)

There can be either an upward or downward pressure on h. Thus, a
signomial equality constraint must be used to constrain altitude.

hi � hi−1 � Δhi (D19)

In the above formulation, hi is equivalent to segment end altitude.

h0 � Δh0 (D20)

Climb segments are constrained to have equal altitude changes,
and the final climb segment altitude is constrained to be greater than a
user-specified minimum cruise altitude. If no minimum cruise
altitude is specified, hcruise;min is optimized.

Δhi�1 � Δhi (D21)

hNclimb
≥ hcruise;min (D22)

Time to climb is constrained to be less than a user-specified
maximum value. If no maximum value is specified, tclimbmax

is
optimized.

XNclimb

0

ti <� tclimb;max (D23)

Finally, the climb gradient at top of climb is constrained to be
greater than 0.015 rad.

θNclimb
≥ 0.015 (D24)

D.5. Cruise Performance Constraints

Cruise range segments are constrained to be equal length. Cruise
Mach number is constrained to be greater than a user-specified
minimum. If no minimum is specified,Mmin is optimized.

a) 737 fuel and relaxed variable cost versus  iteration b) 737 total cost versus iteration

Fig. E1 Cost evolution during solution of the 737 model.

a) D8.2 fuel and relaxed variable cost versus iteration b) D8.2 total cost versus iteration
Fig. E2 Cost evolution during solution of the D8.2 model.
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Ri�1 � Ri (D25)

Mi ≥ Mmin (D26)

The cruise climb angle is assumed to be small. The sum of wing
and fuselage lift is set equal toweight plus horizontal tail down force.
Thrust must overcome both drag and the portion of aircraft weight
acting in the direction of thrust. These constraints are a conservative
approximation of flight physics.

Li ≥ Wavgi
� Lhti

(D27)

NengFi ≥ Di �Wavgi
θi (D28)

In cruise, there is a downward pressure on segment end altitude,
removing the need for a signomial equality.

hi ≥ hi−1 � Δhi (D29)

Appendix E: Model Convergence Plots

All models were solved using the relaxed constants penalty
function solution heuristic from [5]. Consequently, the total cost can
be decomposed into a contribution from relaxed variables and aircraft
fuel burn. Figures E1–E3 present the optimization history for each
model. As expected, the cost contribution of relaxed variables is one
before the final iteration.
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