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Including equality constraints in signomial programming proves trou-
blesome, because a straightforward difference of convex formulation for
such a constraint results in a singular point. Signomial programs are
usually solved by solving successive geometric programs, and the focus
of this paper is on methods for approximating equality constraints in sig-
nomial programs as geometric programs. A general comparison between
convergence characteristics of such methods is presented here, focusing
on local approaches to signomial programming. The introduced methods
locally approximate equality constraints as inequalities and Taylor ap-
proximations, and are compared to a recently developed algorithm from
the literature, which claims to achieve global optimality for these types
of problems. Trust region methods are proposed which perform compa-
rably well to an algorithm from the literature yet are numerically much
simpler to implement. Finally, one of these methods is used to solve a
design problem for a solar unmanned aerial vehicle.

1 Introduction

Geometric programs (GPs) are optimization problems whose objective and constraint functions
are convex in log-space. This feature makes them suitable for a range of efficient numerical
solvers which also guarantee finding a global optimum, if one exists.4 Geometric programming
was introduced by Duffin and Zener in 1967,9 and the theory behind it as well as its practi-
cal applications have received much attention since. The computational efficiency of convex
optimization solvers – and thereby GP solvers – was improved dramatically by the introduc-
tion of interior point methods by Nesterov and Nemirovsky in 1994.20 Geometric programming
has been applied successfully to many engineering problems, such as chemical engineering,23

statistics,18 circuit design,3,22 power control6 and conceptual aircraft design.11

Signomial programs (SPs) are an extension of GPs that relaxes some of the restrictions of the
GP restrictions to allow for a wider variety of applicable problems. However, because signomial
programs are not necessarily convex in log-space, global optimality can no longer be guaranteed.
Nevertheless active research in the field of signomial programming is ongoing, and is popular for
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several applications because it extends the applicability of these types of optimization formu-
lations to practical engineering problems. Signomial programming has been used on problems
ranging from structural applications,1 optimal control,13 chemical engineering,8 communication
systems,24 aircraft design,14 and more.

Signomial programs can be solved iteratively as a sequence of GP subproblems, similar to
difference of convex programming (DC). Forming these GP subproblems requires a GP approx-
imation to the SP problem using some initial guess, where the initial guess for the next problem
is the optimal point of the current problem. Equality constraints can be problematic for SPs
since such GP approximations reduce the feasible space of an approximation to small regions
or even singular points. Several researchers have proposed rapidly converging techniques for
handling equality constraints.15,25 However, oftentimes heuristic parameters are needed which
require tuning for a specific problem.25 Moreover certain algorithms are more suited for specific
types of problems and are unable to solve others altogether. This fact has motivated a need to
understand how the different algorithms compare and if a more universal approach can be ap-
plied. Such an algorithm can then be implemented in GPkit5 – a Python package that is aimed
at making GP and SP solution techniques available to engineering designers. Note that this
paper considers only local approaches to Signomial Programming, although global approaches
do exist.17

The goal of this paper is to (1) provide a comparison of several algorithms for handling
equality constraints in a variety of signomial programs and (2) test these new methods on
a range of illustrative test problems. A set of purely theoretic and one applied problem in
aeronautical engineering for the sizing of a UAV are considered in this comparison. Comparison
metrics include convergence properties, accuracy and computational efficiency of each of the
algorithms. Parametric analysis is provided for those algorithms which employ heurstics to
provide a sensible comparison. Initial starting points are also varied for the different test
problems.

2 Background

A geometric program is a type of optimization problem where the objective and constraint
functions have a specific form. These problems can be stated as

min
x
f(x)

subject to gj(x) ≤ 1, j = 1, ...,m

hj(x) = 1, j = m+ 1, ..., p,

(1)

where f(x) and gj(x) are posynomials and hj(x) are monomials. In the context of geometric
programming, a monomial is an expression of the form

m(x) = cxa11 x
a2
2 · · ·x

an
n , (2)

where c > 0, (x1, . . . , xn) > (0, . . . , 0) is a vector of strictly positive variables, and ai ∈ R. A
posynomial is a sum of one or more monomials and can be written as

p(x) =
K∑
k=1

ckx
a1k
1 xa2k2 · · ·xank

n , (3)

where ck > 0 and K is the number of terms in the posynomial. Note that a posynomial is strictly
positive for xi > 0, due to all coefficients being positive. A logarithmic change of variables is
used to define a convex optimization problem, which can be solved efficiently using existing
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algorithms such as interior point methods. Consider the monomial equality constraint defined
in Eq. (2). The logarithm of this function can be expanded into the sum

logm(x) = log c+ a1 log x1 + · · ·+ an log xn. (4)

Defining a new variable y = (y1, . . . , yn) such that xi = eyi , i = 1 . . . n, the above logarithm in
Eq. (4) can be written in terms of the new variable y as

log c+ a1y1 + · · · anyn = 0. (5)

Eq. (5) is now an affine function of y. Similar techniques transform the objective functions and
inequality constraints into log-sum-exp (LSE) functions.

Signomial programming is an extension of geometric programming where the objective and
constraint functions are signomials. A signomial is defined exactly as a posynomial in Eq. (3)
except that ck ∈ R and hence the coefficients can be negative. A logarithmic change of variables
is no longer guaranteed to result in a convex function. Following this approach, signomial
programming algorithms can guarantee only locally and not globally optimal solutions.

Signomial programs can be solved iteratively as a sequence of GPs, similar to difference of
convex programming. A formal statement for a signomial program can be written as,

min
x
f(x)

subject to gj(x) ≤ 0, j = 1, ...,m

hj(x) = 0, j = m+ 1, ..., p

(6)

where now gj(x) and hj(x) are signomials, and f(x) is a posynomial.
The signomial inequality constraints gj(x) ≤ 0 can be rewritten in the form p1 ≤ p2 where

p1 and p2 are posynomials. The inequality constraint gj(x) ≤ 0 is split into a posynomial,
g+j (x), and a negynomial, g−j (x), where g−j (x) has strictly negative coefficients. The resulting

constraint, g+j (x) ≤ −g−j (x) then has posynomials on both sides.
A common approach is to monomialize the right-hand side of the constraint to transform

this inequality into a GP-compatible constraint. The monomialization of p2 is made using a
first order Taylor appoximation at the current point xk and is denoted by p̂2(x

k). Once the
approximation has been made, dividing through by the monomial p̂2(x

k) yields the inequality
constraint

p1
p̂2(xk)

≤ 1, (7)

where the left hand term is now also a posynomial. When the signomial program only has
inequality constraints, this method renders the subproblem a geometric program. The signomial
program is then solved by optimizing a series of GP subproblems whose constraints have been
monomialized. The solution to the current GP subproblem at xk then yields the next iterate
xk+1. This is summarized in Algorithm 1.

Note that x0 may not be feasible for the GP subproblem or even the original SP. In that
case, a so-called feasibility solve is performed to find either a feasible point or to determine that
the problem is in fact infeasible. In this feasibility problem all constraints are relaxed to find a
feasible point for the original geometric problem. Thus, in the feasibility problem one tries to
find out whether the constraints are mutually consistent, and step towards a feasible point, if
it exists. The feasibility solve is therefore formulated as4

min
x,si

s1 · · · sm

subject to gi(x) ≤ si, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p

si ≥ 1, i = 1, . . . ,m,

(8)
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Algorithm 1 Algorithm for Solving SPs with a signomial inequality constraint p1(x) ≤ p2(x).

Input: Initial guess x0

Output: Approximate solution x∗ to the signomial program within specified tolerance ε
1: Initialization k = 0

2: while
|f(xk)−f(xk−1)|
f(xk)+f(xk−1)

> ε do

3: m2(x, x
k) = p̂2(x, x

k)

4: ĝ(x, xk) = p1(x)
m2(x)

5: x∗ = arg minx f(xk)
subject to ĝ(x, xk) ≤ 1

6: xk+1 = x∗

7: k = k + 1
8: end while

where the design variables are x (same as the original problem), and the slack variables si are
added. We solve for the optimum x̄ and s̄i. If every s̄i = 1 then the original GP problem is
feasible, and if any s̄i > 1, the original GP problem is infeasible. Therefore, if the original
problem is feasible, but the initial point is not, a feasible point x̄ is found quickly and the
iteration continues from there.

For a problem with only inequality constraints, this technique is quite popular, it works well
in practice, and again only suffers from the fact that only a locally optimal solution can be
guaranteed.4 It should also be noted that the monomialization results in a conservative approx-
imation of the feasible region of the original SP, i.e. the feasible region of each GP subproblem
is contained in the feasible region of the original SP. The solution xk at each iteration – if it
exists – is therefore guaranteed to be feasible for the original problem. The local optimum found
by the signomial program is therefore also guaranteed to be a feasible local optimum, but it
may not be globally optimal.

Using this approach for equality constraints, however, results in several problems. In the pre-
vious case, each GP subproblem is convex in log-space. An equality constraint of the form
p1 = p2 is usually rewritten as the intersection of two constraints: p1 ≤ p2 and p1 ≥ p2. Using
the same method as before, p2 is monomialized while p1 is kept as a posynomial form to yield
p1 ≤ p̂2. Similarly, the latter inequality can be rewritten as p2 ≤ p̂1. Unfortunately this method
results in a single feasible point. To illustrate this issue, we will use an example from sequential
convex programming.2 This is similar to signomial programming except for the conversion to
log-space.

Consider the problem

min
x,y

(
x+

1

4

)2

+

(
y − 1

2

)2

subject to x2 + x− y = 0,

(9)

where the feasible set is shown in Fig. 1(a) as a parabolic line representing the equality con-
straint.

One approach to solve this problem is to split the equality constraint x2+x = y into x2+x ≥ y
and x2 + x ≤ y. The latter is convex but the former is not. In order to convert this into a
convex problem, the nonconvex constraint can be linearized at the current iterate to yield a
convex affine approximation. However, the intersection of the two sets defined by the convex
and linearized affine constraints is now a single feasible point as shown in Fig. 1(b): the first
convex constraint is satisfied above the curve y = x2+x and the linearized constraint is satisfied
below the blue line, which is the same problem we have described for signomial programming.
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(b) One constraint linearized around x = −0.4

Figure 1: Example of single feasible point when one side of the constraint is linearized.

In practice, SPs are sometimes solved by replacing the equality constraint with a single
inequality constraint. Having knowledge about which side of the equality constraint is pressured
during the optimization can allow a designer to implement a tight inequality constraint. This
knowledge, however, is not always known a priori. For problems where this knowledge is not
available, we need a robust method to implement equality constraints in signomial programs.

3 Methodology

In this section several different methods of enforcing equality constraints for SPs are discussed.
We compare these against a recent method from the literature developed by Xu in 2014.25

3.1 Linearizing only one of the two constraints at a time (Method A)

The first method we investigate is the original – and simplest – way of enforcing a signomial
equality constraint. Fig. 2 deals with the case p1(x) = p2(x), where p1(x) and p2(x) are
posynomials. First, the posynomial equality constraint is split into two inequality constraints:
p1(x) ≤ p2(x) and p1(x) ≥ p2(x). p2(x) is then monomialized in the former constraint, while
p1(x) is monomialized in the latter constraint.

SP constraint GP approximation at xk

p1(x) = p2(x)

p1(x)

p̂2(x, xk)
≤ 1

p2(x)

p̂1(x, xk)
≤ 1

Method A

Figure 2: Illustration of changes to the original SP constraints to form the GP subproblem using
Method A for one posynomial equality constraint.

As mentioned in Section 2, such an approach yields a GP with a single feasible point. While
this approach therefore does not seem robust, some cases exist where it can be effective, espe-
cially when combined with a feasibility solve.4 When starting from an infeasible initial point,
a feasibility problem should be solved first. That feasibility problem has more than one single
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Figure 3: Design space for fully linearized constraint. Feasible design space is now between the
parabolic line and the line above the linearization point (the dark blue region).

feasible point, because the constraints are relaxed with the slack variables si. This allows us to
take a large step towards feasibility during the first iteration.

3.2 Linearizing and relaxing one constraint (Method B)

Another method is to expand the feasible region of the inequality constraints derived from the
equality constraint. Thus, the equality constraint p1(x) = p2(x) is transformed into p1(x) ≤
p2(x) as before, and p1(x) ≥ αp2(x), where α < 1. The scaling factor α dictates the size of the
trust region. As is shown in Figure 3, the trust region now includes feasible points located on
the parabolic line segment as well as slighty above the parabolic line segment (which are not
feasible in the original SP). By keeping the trust region small, the number of such infeasible
points is limited.

The approach for this method is illustrated in Fig. 4. This approach is the most similar of
all methods presented in this paper to Xu’s algorithm,25 which is discussed in Section 3.5.

SP constraint GP approximations at xk

p1(x) = p2(x)

p1(x)

p̂2(x, xk)
≤ 1

α
p2(x)

p̂1(x, xk)
≤ 1

Method B

Figure 4: Illustration of changes to the original SP constraints to form the GP subproblem using
Method B for one posynomial equality constraint.

3.3 Linearizing both constraints (Method C)

In this method, both sides of the derived inequality constraints are monomialized to yield a
monomial equality constraint, which is illustrated in Fig. 5.
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SP constraint GP approximations at xk

p1(x) = p2(x)
p̂1(x, xk)

p̂2(x, xk)
≤ 1

p̂2(x, xk)

p̂1(x, xk)
≤ 1

Method C

Figure 5: Illustration of changes to the original SP constraints to form the GP subproblem using
Method C for one posynomial equality constraint.

The feasible region for the GP subproblem is now a line (in log-space) through the current
iterate xk. Note that this therefore allows for points on the line which are not feasible in our
original problem, as illustrated in Fig. 6. However, even when the current iterate is an infeasible
point, the monomialization for the next iterate will linearize the problem around a feasible point,
in most cases that linearization point will lay on the original SP constraint.
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Figure 6: Design space for fully linearized constraint. Feasible design space is now on the blue line.

3.4 Linearizing both constraints with added trust region (Method D)

As illustrated in Fig. 6, Method C linearizes the derived inequality constraints such that the
tangent line to the original equality constraint is considered feasible in the suproblem. This
allows for a large infeasible region for the original SP, which may be problematic. Therefore,
Method D utilizes a trust region to bound the points on the new feasible region (illustrated as
a line segment in Fig. 7). For every design variable that is included in the equality constraint
we add a trust region as follows

αxi,0 ≤ xi ≤
1

α
xi,0, (10)

where α < 1 is a tuning parameter. The new optimization formulation is shown in Fig. 8.
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Figure 7: Design space for fully linearized constraint with added trust region. Feasible design space is
now on the blue line between the vertical black lines.

SP constraint GP approximations at xk

p1(x) = p2(x)
p̂1(x, xk)

p̂2(x, xk)
≤ 1

p̂2(x, xk)

p̂1(x, xk)
≤ 1

x

xk
≤ 1

α
xk

x
≤ 1

α

Method D

Figure 8: Illustration of changes to the original SP constraints to form the GP subproblem using
Method D for one posynomial equality constraint.

3.5 Xu’s method

Xu proposes a global optimization approach for SPs which also relies on the monomialization of
the inequality and equality constraints.25 This algorithm applies several heuristic parameters
including an added constant to the objective function and a vector of weights for auxiliary
variables assigned to a set of equality constraints. The weights monotonically increase to force
the auxiliary variables to unity and shift the feasible region of the relaxed problem closer to
that of the original SP. Xu’s algorithm is provided in Algorithm 2.

Continuing with the previous example from Eq. (9), we can illustrate the problem transfor-
mation following Xu’s algorithm without converting into log-space. Note that the objective
function for our example is always positive and hence the parameter M can be neglecteda. The
constraint is first transformed into two inequality constraints as follows:

y ≥x2 + x

y ≤s(2x+ 1)
(11)

aXu adds a sufficiently large scalar M to the objective function to ensure the objective function is always
positive.
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Algorithm 2 Xu’s algorithm for solving of signomial programs with the equality constraint p1 = p2.25

Input: Initial point x0, positive constant M , initial slack variable weights w0
i , and update

parameter α
Output: Approximate solution x∗ to the signomial program within specified tolerance ε

1: Initialization k = 0

2: while
|f(xk)−f(xk−1)|
f(xk)+f(xk−1)

> ε do

3: f̄(t, s) = t+
∑
ws

4: g0(x
k) = f++M

f−+t
5: if p1 is a monomial then
6: m2(x

k) = p̂2(x
k)

7: g1(x
k) = p2(xk)

p1(xk)

8: ĝ2(x
k) = p1(xk)

m2(xk)

9: else if p2 is a monomial then
10: m1(x

k) = p̂1(x
k)

11: g1(x
k) = p1(xk)

p2(xk)

12: ĝ2(x
k) = p2(xk)

m1(xk)

13: else
14: m1(x

k) = p̂1(x
k)

15: m2(x
k) = p̂2(x

k)

16: ĝ1(x
k) = p1(xk)

m2(xk)

17: ĝ2(x
k) = p2(xk)

m1(xk)

18: end if
19: (x∗, t∗, s∗) = arg mint,s f̄(t, s)

subject to g0(x
k) ≤ 1 and g1(x

k) ≤ 1 and ĝ2(x
k) ≤ s and s ≥ 1

20: xk+1 = x∗

21: wk+1 = αwk

22: k = k + 1
23: end while

9 Equality Constraints in Signomial Programming



where s is the slack variable. Note that the slack variable effectively loosens the equality
constraint by shifting the linearized approximation. This approach is very similar to what is
being proposed in Section 3.2 and is illustrated in Fig. 9. In addition, the original problem
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(d) s = 10

Figure 9: Increasing the feasible space with slack variable s.

plotted in the {x, y} design space is now mapped to the {s, t} space where t is a new variable
introduced to linearize the objective function. The mapping between the two spaces is illustrated
in Fig. 10. Because the slack variable effectively changes the size of the feasible region, larger
slack variables will allow for greater optimality at the expense of feasibility. Hence the Xu
approximation should ultimately yield slack variables close to 1.0 in order to enforce the equality
constraints effectively. As is shown in Fig. 10, s = 1.0 may not minimize the transformed
problem at any given iteration in the Xu algorithm. However, by requiring the weights to
monotonically increase, Xu’s algorithm is continuously changing the objective landscape such
that a slack variable of 1.0 will ultimately be optimal. This trend is illustrated in Fig. 11 where
a larger weighting factor is applied to the linearized objective function. The shift in objective
function level sets as the weighting factor w is increased indicates the smallest value of s (the
lower bound of 1.0) will ultimately minimize the objective function.
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Figure 10: Transformation from {x, y} space to {s, t} space using Xu’s algorithm with a slack variable
weight w = 0.05.
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(a) Weighting factor w = 0.05
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Figure 11: Increasing the weighting factor shifts the linearized objective function such that smaller
slack variables are desired.

4 Results

The methods from Section 3 are applied to several test problems, as well as one application
problem in aircraft design.

Each method from Section 3 is implemented in a geometric programming modeling package
in Python known as GPkit.5 GPkit is focused on making GP and SP solution techniques
accessible to engineering designers. It interfaces with open-source and commercially-available
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Table 1: Convergence results for Example 1 with an initial point x0 = (1, 1).

Method A B B C D D Xu†

Trust region, α n/a 99.9% 99 % n.a. 90% 50% n/a
# GP iterations 8 4 4 3 12 5 3
CPU time, [s] 0.235 0.162 0.158 0.112 0.313 0.152 0.145
Objective value 5.000 4.9995 4.95 5.000 5.000 5.000 5.000
Absolute objective error 6.2e-10 0.005 0.05 8.88e-16 8.88e-16 8.88e-16 1.171e-09

† an initial weighting of w0 = 1 and update parameters α = 1.1 was used for all slack variables
in the linearized objective function

Table 2: Convergence results for Example 1 with an initial point x0 = (5, 10).

Method A B B C D D Xu†

Trust region, α n/a 99.9% 99% n/a 90% 50% n/a
# GP iterations 100 8 4 3 11 4 3
CPU time, [s] −− 0.295 0.161 0.0853 0.308 0.111 0.139
Objective value −− 4.995 4.950 5.000 5.000 5.000 5.000
Absolute objective error −− 0.005 0.05 8.88e-16 8.88e-16 8.88e-16 1.170e-09

† an initial weighting of w0 = 1 and update parameters α = 1.1 was used for all slack
variables in the linearized objective function.
†† “−−” denotes that the problem could not be solved in 100 iterations.

interior-point solvers. The following example problems were solved using the solver MOSEK19

with a free academic license. All tests were run on a dual-core 3.1GHz Intel Core i7 processor.

4.1 Example 1

In the first example we consider a small two-dimensional linear problem

min
x1,x2

x1

subject to x1 = x2 + 1

x2 ≥ 4.

(12)

It is straightforward to see that the optimum solution exists at x̄1 = 5, x̄2 = 4. Of course,
in practice one would not solve this using signomial programming, but this example illustrates
some important characteristics of the solution methods proposed.

Tables 1 and 2 provide a general comparison between the performance of all five methods
discussed in Section 3. Table 1 provides convergence characteristics using an infeasible initial
design point x0 = (1, 1) and Table 2 provides the same data where a feasible initial design point
x0 = (5, 10) is chosen. For the algorithms that require tuning parameters (i.e Methods B, D and
Xu), we also check the convergence of these methods for different values of these parameters.

We see that except for Method A with starting point x0 = (5, 10), all methods do converge
to some value. The reason Method A converges when given an initial infeasible design point
is because the first solve is actually a feasibility solve. A feasibility solve will push x2 close to
the inequality constraint x2 ≥ 4. The solver then iterates around the new feasible point for a
few steps before converging. When the initial point is feasible, the algorithm cannot converge
because there is only one feasible point in each approximated geometric program and as such
the only way the design point can progress is due to floating point rounding errors. Method
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Table 3: Convergence results for Example 1 using Methods A and C with 100 random initial points.

Method A C

min. mean max. min. mean max.

% Successful runs 35% 100%
# GP iterations 2 8.5 74 2 2.9 3
CPU time, [s] 0.045 0.21 1.8 0.028 0.049 0.088
Objective value 5.000 5.056 5.611 5.000 5.000 5.000
Absolute objective error 6.21e-10 0.0561 0.611 8.88e-16 8.88e-16 8.88e-16
Absolute constraint error 2.76e-09 1.15e-08 5.39e-08 2.22e-16 2.22e-16 2.22e-16

B does converge for all conditions in Tables 1 and 2, but has a relatively large error which
seems to correlate with the size of the trust region. This makes sense intuitively since one
of the inequality constraints (derived from the equality constraint) remains tight in each GP
subproblem, but that constraint is exactly the one that is relaxed from the original equality
constraint. Method C performs the best of all methods considering that it solves for both initial
conditions and only requires 3 iterations to converge while taking the least CPU time. Moreover
the solutions achieved by Method C are accurate up to machine precision. Method D is similar
to Method C in terms of accuracy, but requires more iterations (and hence more CPU time) to
converge. This result is expected since each successive step is bounded by the predefined trust
region. Xu’s method also performs comparably well to Method C. For both initial points Xu’s
method requires only 3 iterations to converge and is only marginally slower than Method C.
The accuracy, however, is orders of magnitude lower than Method C which may be attributed to
the fact that the slack variable never exactly reaches its lower bound of 1.0. Thus the equality
constraints will always have some finite slack and the feasibility of the design point can never
be guaranteed to be within machine precision.

Next, each algorithm is tested on a set of 100 randomly chosen initial design points to deter-
mine how sensitive the results are to the initial condition. This analysis is also meant to assess
the global optimality of these methods. Table 3 compares the performance of Methods A and C.
Likewise, Table 4 compares the performance of Methods B and D respectively as both require
a trust region sizing parameter that is also varied. And finally the results for the Xu algorithm
are provided in Table 5. The randomly generated initial variables x1 and x2 have a uniform
distribution from 1 to 11 (i.e. x01 ∼ U [1, 11], x02 ∼ U [1, 11]) and the convergence tolerance is set
to 10−7. Note that the initial points may be feasible or infeasible. An unsuccessful solve means
that either convergence was not achieved in 100 iterations or the solver returned an error.

From Table 3, Method A is successful in 35% of the runs, which makes sense because only
roughly 35% of the runs have an infeasible starting point (see previous discussion above).
Method C on the other hand works 100% of the time and needs only 2 to 3 iterations to
converge to a solution which is accurate to machine precision. Note that in all these results,
the reported CPU time does not include failed runs.

In Table 4 Methods B and D are compared using only the averaged values of all 100 runs. Both
methods perform adequately well and both achieve 100% success rates. However, as previously
mentioned, Method B suffers from lower accuracy whereas, Method D requires more iterations.
Both methods are clearly outperformed by Method C.

Finally in Table 5, the Xu algorithm is tested using both a small initial slack variable weight
w0 = 1 and small update factor α = 1.1 as well as a larger weight w0 = 10 and update
factor α = 2. Recall that α multiplies the slack variable weight to drive the slack variable to
1.0. Essentially, the inequality constraints are tightened more quickly with larger w0 and α to
match the equality constraints.
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Table 4: Convergence results for Example 1 using Methods B and D with 100 random initial points.

Method B B B D D D

Trust region, α 90% 99% 99.9% 50% 70% 90%
% Successful runs 100% 100% 100% 100% 100% 100%
# GP iterations 2.0 3.0 5.6 3.5 4.7 8.1
Objective value 4.500 4.950 4.995 5.000 5.000 5.000
Absolute objective error 0.50 0.50 0.005 8.88e-16 8.88e-16 8.88e-16
Absolute constraint error 0.50 0.50 0.005 8.88e-16 8.88e-16 8.88e-16

Table 5: Convergence results for Example 1 using Xu’s Algorithm with 100 random initial points.

Intial weights w0 w0 = 1 w0 = 10
Update factor α α = 1.1 α = 2

min. mean max. min. mean max.

% Successful runs 100% 100%
# GP Iterations 2 2.98 3 2 2.98 3
Objective value 4.999 4.999 4.999 5.000 5.000 5.000
Absolute objective error 5.83e-8 1.31e-7 3.72e-6 8.45e-7 2.27e-5 2.31e-5
Absolute constraint error 5.65e-8 5.84e-8 1.51e-7 2.93e-8 7.53e-7 7.68e-7

4.2 Example 2

The next example problem is used by Xu25 (example 4 in his work) – originally from Rountree
and Rigler21 – and is put in standard SP form here

min
t,x1,x2

t

subject to x21 + x22 + 5− (t+ 4x1 + 2x2) ≤ 0

1

4
x21 + x22 ≤ 1

2x2 − (x1 + 1) = 0,

(13)

where the global optimum is x̄1 =
(√

7− 1
)
/2, x̄2 =

(√
7 + 1

)
/4 with an objective value of

1.393.
Again each of the five methods from Section 3 are compared to one another in Tables 6 and 7.

Table 6 provides all test results for the initial infeasible point x0 = (2, 1) and Table 7 provides
all test results for the initial feasible point x0 = (1/2, 1).

In this particular example only Method C and the Xu algorithm can solve for the infeasible
starting point within the 100 iteration limit. For the feasible starting point, all methods do
converge (except Method D when the trust region size is 50%). However, Methods A and B
have low accuracy compared to Methods C and D. Other variations in the number of iterations
and CPU time are small. The Xu algorithm again performs comparably well to Method C which
performs best amongst all these algorithms for this specific problem and initial conditions.

As before, all algorithms are run for this problem with 100 different randomly chosen initial
points and their performance is compared between one another. The results of this comparison
are shown in Table 8 for method A and C, in Table 9 for method B and D, and Table 10 for
Xu’s method. Note that the convergence tolerance is lowered to 10−4 in order for methods A, B
and D to yield success rates above 0%. Clearly Method A does not work well, even if the initial
point is infeasible. Both Method A – if it is successful – and Method C are accurate to within
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Table 6: Convergence results for all methods for Example 2 with an initial point
x0 = (2, 1).

Method A B B C D D Xu†

Trust region, α n/a 99.9% 99% n.a. 90% 50% n/a
# GP iterations −− −− −− 4 −− −− 3
CPU time, [s] −− −− −− 0.168 −− −− 0.214
Objective value −− −− −− 1.393 −− −− 1.393
Absolute objective error −− −− −− 7.42e-11 −− −− 7.036e-10

† an initial weighting of w0 = 1 and update parameters α = 1.1 was used for all
slack variables in the linearized objective function.
†† “−−” denotes that the problem could not be solved in 100 iterations.

Table 7: Convergence results for all methods for Example 2 with an initial point x0 = (0.5, 1).

Method A B B C D D Xu†

Trust region, α n/a 99.9% 99% n/a 90% 50% n/a
# GP iterations 5 8 5 5 −− 4 5
CPU time, [s] 0.222 0.274 0.350 0.184 −− 0.166 0.187
Objective value 2.311 1.391 1.364 1.393 −− 1.393 1.393
Absolute objective error 0.918 0.0029 0.0290 3.75e-11 −− 2.11e-9 8.16e-10

† an initial weighting of w0 = 1 and update parameters α = 1.1 was used for all slack
variables in the linearized objective function.
†† “−−” denotes that the problem could not be solved in 100 iterations.

10−9 for both the objective and constraint functions, however Method C not only demonstrates
a 100% success rate, but also proves to be slightly faster in mean CPU time required.

Next, comparing methods B and D in Table 9, the same conclusion can be made that Method
B has poor relative accuracy compared to the other methods. Furthermore, neither B or D are
100% successful and typically they fail more than 50% of the time. A similar trend still exists
that a larger the trust region size usually results in a higher convergence success rate and a
lower accuracy. Method D is again not nearly as robust as Method B, but is able to achieve
orders of magnitude higher accuracy to compete with Methods A and C.

Finally, Xu’s algorithm also performs well for this problem. Again narrowly defeated by
Method C, Xu’s algorithm is able to perform the solves in roughly the same number of iterations,
with a 100% success rate and only 2 to 3 orders of magnitude reduction in accuracy for both

Table 8: Convergence results for Example 2 using Methods A and C with 100 random initial points.

Method A C

min. mean max. min. mean max.

% Successful runs 4% 100%
# GP iterations 5 5.8 7 5 6.4 9
CPU time, [s] 0.155 0.188 0.206 0.11 0.16 0.33
Objective value 1.42 1.66 1.88 1.393 1.393 1.393
Absolute objective error 0.028 0.27 0.49 2.86e-11 2.88e-11 2.92e-11
Absolute constraint error 3.93e-10 1.31e-09 1.67e-09 1.86e-10 1.87e-10 1.90e-10
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Table 9: Convergence results for Example 2 using Methods B and D with 100 random initial points.

Method B B B D D D

Trust region, α 90% 99% 99.9% 50% 70% 90%
% Successful runs 53% 13% 12% 13% 3% 1%
# GP iterations 5.7 5.8 6.8 4.5 4.3 7.0
Objective value 1.109 1.364 1.391 1.395 1.393 1.393
Absolute objective error 0.284 0.0290 0.00291 1.99e-9 1.80e-9 5.90e-9
Absolute constraint error 0.195 0.0184 0.00182 3.59e-10 4.35e-10 9.54e-10

Table 10: Convergence results for Example 2 using Xu’s Algorithm with 100 random initial points.

Intial weights w0 w0 = 1 w0 = 10
Update factor α α = 1.1 α = 2

min. mean max. min. mean max.

% Successful runs 100% 100%
# GP Iterations 6 6 6 7 7 7
Objective value 1.393 1.393 1.393 1.393 1.393 1.393
Absolute objective error 3.664e-7 3.664e-7 3.664e-7 6.296e-8 6.296e-8 6.296e-8
Absolute constraint error 4.470e-8 4.470e-8 4.470e-8 7.261e-9 7.261e-9 7.261e-9

the objective and constraint functions. Another significant find is that the heuristic parameters
of Xu’s method – the initial slack variable weights w0 and the update factor α – can have a
wide variation and still yield comparably good results for this specific problem.

4.3 Example 3

Next we investigate the performance for Example 5 in Xu’s work.25 This problem was originally
proposed in Ref. 10 and 16 for the optimal design of a sequence of two CSTR reactors

max
x1,x2,x3,x4,x5,x6

x4

subject to x1 + k1x1x5 = 1

x2 − x1 + k2x2x6 = 0

x1 + x3 + k3x3x5 = 1

x4 − x3 + x2 − x1 + k4x4x6 = 0
√
x5 +

√
x6 ≤ 4

(x1, x2, x3, x4, x5, x6) ≤ (1, 1, 1, 1, 16, 16)

(x5, x6) ≥
(
10−5, 10−5

)
,

(14)

where k1 = 0.09755988, k2 = 0.99k1, k3 = 0.0391908, and k4 = 0.9k3.
For this problem, we consider only the 100 random initial point test. The results between

Methods A and C, and Methods B and D are presented in Table 11 and Table 12 respectively.
Again the same trend continues: Method A is not robust, Method B is relatively slow and
inaccurate, and not robust. Finally, Method D is not robust if the trust region is too small since
a larger number of iterations are required. Again, there does not seem to be a benefit of using
Method D over Method C for this particular problem.

Xu’s algorithm again performs comparably well for this example. However, from Table 13 it
is clear that the rate of convergence is significantly affected by the initial weights and update
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Table 11: Convergence results for Example 3 using 100 random initial points.

Method A C

min. mean max. min. mean max.

% Successful runs 3% 100%
# GP iterations 8 9.3 10 2 7.7 23
CPU time, [s] 0.25 0.30 0.34 0.076 0.27 0.81
Objective value 0.386 0.388 0.389 1.393 1.393 1.393
Absolute error 4.457e-08 8.452e-4 0.00255 2.86e-11 1.64e-9 1.82e-8
Absolute constraint error 3.92e-10 1.58e-09 3.32e-09 5.55e-17 3.27e-10 5.03e-9

Table 12: Convergence results for Example 3 using Methods B and D with 100 random initial points.

Method B B B D D D

Trust region 10% 1% 0.1% 50% 30% 10%
% Successful runs 100% 94% 74% 100% 3% 1%
# GP iterations 38.7 73.7 78.7 24.9 28.2 23.4
Objective value 0.466 0.396 0.390 0.389 0.389 0.389
Absolute objective error 0.0774 0.00804 0.000805 7.38e-6 3.77e-6 3.27e-7
Absolute constraint error 0.164 0.0175 0.00177 2.70e-10 2.76e-7 5.03e-6

parameter. For small values of α and w0 it is evident that the constraints are not satisfied
properly, resulting in as much as 20% error in satisfying the constraints.

4.4 Example 4

Method C performed well over the previous three examples. However, we can construct an op-
timization problem where the algorithm would never converge because it is caught in an infinite
sequence jumping between two points in the design space. Consider the following problem,

min
x1,x2

x2

subject to x2 (1 + x1) = x21 (1 + x1) + 100

x1 ≥ 10−3

x1 ≤ 100,

(15)

where the last two constraints are added to bound the problem. The design space of this problem
is shown in Fig. 12. When a linearization is performed at any x1 < x̄1, the algorithm will push
the design point to the upper bound x1 = 100. Likewise, monomializing the constraint to the

Table 13: Convergence results for Example 3 using Xu’s Algorithm with 100 random initial points.

Intial weights w0 w0 = 1 w0 = 10
Update factor α α = 1.1 α = 2

% Successful runs 100% 100%
# GP Iterations 5 27.2 40 3 5.48 12
Objective value 0.383 0.389 0.476 0.347 0.383 0.3888
Absolute objective error 2.23e-05 0.00426 0.0871 2.06e-10 1.36e-8 6.02e-8
Absolute constraint error 1.24e-07 0.00445 0.183 3.83e-12 4.78e-10 3.15e-7
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Figure 12: Design space for Example 4.

Table 14: Convergence results for Example 4 using Methods B and D with 100 random initial points.

Method B B B D D D

Trust region 10% 1% 0.1% −− −− −−
% Successful runs 100% 100% 100% −− −− −−
# GP iterations 5.02 5.02 5.08 −− −− −−
Objective value 34.0 34.0 34.0 −− −− −−
Absolute objective error 8.71e-5 8.72e-5 8.71e-5 −− −− −−
Absolute constraint error 2.11e-7 1.63e-7 1.15e-7 −− −− −−

“−−” denotes that the problem could not be solved in 100 iterations.

right of x̄1 will push the design point into the lower bound x1 = 0.001. Method C is therefore
expected to endlessly switch back and forth between those two bounds.

Firstly we use Methods A and C on this problem. Method A is not able to solve the problem
within 100 iterations, irrespective of the initial condition. This is for the same reason as before:
the linearization renders the initial condition as the only feasible point. Method C also does
not work because it keeps switching between x1 = 10−3 and x1 = 100 for the reason explained
above, regardless of the initial condition.

The results for methods B and D is shown in Table 14. Method B performs well, and is able
to converge in roughly 5 GP iterations for most runs. Method D on the other hand cannot
solve the problem. This is due to the fact that the algorithm keeps switching two non-optimal
points. The distance between those two points is determined by the size of the trust region.

Finally, we apply Xu’s algorithm to this problem. We see that for w0 = 1, and α = 1.1,
the algorithm is struggling, requiring 39 iterations to converge. When we run the algorithm for
w0 = 10, and α = 2, the algorithm requires on average only 7 iterations. Method B, however,
still performs better on this problem.

Note that this example is contrived. First, we can easily solve the problem using signomial
programming by relaxing the equality constraint to an inequality constraint because the ob-
jective function x2 will force the inequality constraint to be tight. Second, if we change the
objective function to for instance x1x2, Method C works again and the other methods also work
better. Nonetheless, such a situation can arise in practice and in that case it could help to
employ Method B for that one constraint.
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Table 15: Convergence results for Example 4 using Xu’s Algorithm with 100 random initial points.

Intial weights w0 w0 = 1 w0 = 10
Update factor α α = 1.1 α = 2

min. mean max. min. mean max.

% Successful runs 100% 100%
# GP Iterations 39 39 39 4 6.9 13
Objective value 34.0 34.0 34.0 34.0 34.0 34.0
Absolute objective error 8.71e-05 8.71e-05 8.71e-05 1.23e-07 3.15e-04 5.24e-03
Absolute constraint error 5.13e-08 5.13e-08 5.13e-08 1.87e-08 1.91e-06 1.03e-05

4.5 Solar UAV design problem

To demonstrate our algorithm, we apply it to a practical engineering problem, specifically the
design of a solar Unmanned Aerial Vehicle (UAV). This UAV is intended to be used as an
atmospheric satellite and should stay stationary with respect to the ground, i.e. fly at the same
speed as the wind, or circle around if the wind speed is below the optimum endurance speed. The
UAV design problem – without including an atmosphere model – can be written as a geometric
program, following similar modeling strategies as in Ref. 11. The atmosphere model, however,
couples with the UAV design problem to transform the problem into a signomial program with
posynomial equality constraints.

0 20 40 60 80

0

10

20

30

40

50

60

70

(a) 90th, 95th, 99th percentile wind speeds averaged
over the year 2015 as a function of altitude.
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(b) Signomial and posynomial fitting to the 90th per-
centile wind speed relation.

Figure 13: Absolute wind speed versus altitude, averaged over the globe for the year 2015.

The atmosphere model is necessary to determine at which altitude the UAV should fly, be-
yond the requirement to stay above 15,000 ft for coverage requirements. The model uses the
International Standard Atmosphere (ISA) and ideal gas law to relate altitude to atmospheric
pressure, density, and temperature. The constraints that are added for the atmosphere model
are,

patm
p0

=

(
Tatm
T0

)− g
RairL

(16)

ρatm =
patm

RairTatm
(17)

T0 = Tatm + Lh, (18)
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where patm, ρatm, and Tatm are the pressure, density, and temperature at the altitude h, respec-
tively. p0 and T0 are the pressure and temperature at sea level. L is the temperature lapse rate,
g is the gravitational acceleration and Rair is the gas constant for air. Because both Tatm and
h are design variables, Eq. 18 is in fact a posynomial equality constraint.

Furthermore, we use a wind model based on data from the European Centre for Medium-
Range Weather Forecasts (ECMWF).7 We use this data to relate wind speed to altitude. Be-
cause of the constraint to remain stationary with respect to the ground, the mission air speed
needs to be higher than the wind speed. The mission required for this particular UAV is that it
must be able to fly faster than the 90th percentile wind speeds averaged over the whole world
during the year 2015. The variation of wind speeds with altitude is shown in Fig. 13(a), where
we clearly see the jet stream between 20,000 ft and 50,000 ft.

In order to integrate the wind data in the aircraft design model, the mapping between wind
speed and altitude must be translated into a posynomial or signomial form. Unfortunately,
the data is concave in log-space so fitting a posynomial over the whole range would not work.
Instead, one can fit a polynomial to the data – which inevitably will have negative coefficients
– using least squares regression. The result is shown in 13(b). In the signomial program this
constraint would then be implemented as a signomial inequality constraint.

However, we can also see that the relation up to about 35,000 ft is almost linear. Furthermore,
the relation above 35,000 ft looks like a convex function. Therefore, we can also fit posynomials
to these altitude subsets separately. We use GPfit for this purpose, which fits posynomials to
data.12 Using these two approximations, we have to solve the signomial program twice: once
for low altitudes and once for high altitudes. We compare the results of both methods – least
squares regression and fitting two separate polynomials – when we run the problem.

We attempt to solve the resulting program using the methods from Section 3. Xu’s algorithm
is however not included because the number of constraints in the problem are too large to
manually pick each constraint to belong to one of four different sets, as is required by the Xu
algorithm. The Xu approach is therefore not scalable to large design problems. Our objective
function is the weight of the UAV. In total the problem has 19 design variables – such as
span, area, battery weight, lift coefficient, etc. – and 22 constraints. The results are shown
in Table 16, where we show some characteristic design variables, as well as the number of GP
iterations and CPU time. We only show the results for Method C, the other methods showed
similar results to earlier examples: Method A is not able to solve within a reasonable time,
and Methods B and D are able to solve the problem but take more iterations than Method C.
Additionally, we see that fitting two posynomials to the data and solving the problem twice is
much easier to solve. This highlights the fact that signomial (in)equalities should be avoided
whenever possible, because they do make the problem harder to solve.

Table 16: Results for Solar UAV examples using the GP fit (for higher altitudes) and the SP fit.

GP fit SP fit

Overall weight, [lbf ] 92.84 102.3

Span, [ft] 86.57 71.44
Altitude, [ft] 65,617 59,130
Air density, [kg/m3] 0.0954 0.1328
Cruise velocity, [m/s] 22.89 24.82

# GP iterations 5 226
CPU time, [s] 0.395 17.4

Concluding, Method C does not seem to have any issue solving this optimization problem
for a real application, and requires minimal effort to implement – both for implementing the
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algorithm, as well as setting up the problem. This extends the applicability of the original GP
model substantially and allows for finding the optimal cruise altitude for the UAV.

5 Conclusion

The best overall performing algorithm was Method C. While its performance did rival that of
Xu’s algorithm, an important distinction here is that Method C is easier to implement. Xu’s
method requires each constraint to be individually categorized into one of the six categories of
constraints defined by Xu in his algorithm.25 For small problems this is not necessarily an issue,
but for large optimization problems – such as the aircraft design problem from Kirschen et al.14

which includes 238 design variables and 250 constraints – would have taken significantly longer
to implement. However, it appears that the simplicity of Method C did not compromise per-
formance when compared to Xu’s algorithm. And the fact that Method C does not incorporate
any heuristic parameters means that tuning of the algorithm, also a commonly time-consuming
process, is not required. In summary, Method C provides the best overall performance when
considering implementation complexity as as trade-off. However, it remains a heuristic, and
we have seen that a relatively simple problem results in a failure of the algorithm. For that
particular problem, Method B worked better.

We therefore suggest starting with Method C, which seems to work well for a large of variety of
problems. If Method C does not converge, Method B could be used as a more robust alternative,
albeit with slower convergence and less accurate results. Considering signomial programming
uses heuristics to find a solution, we make no claims as to whether one of these methods can
achieve global convergence, we can only assess convergence to a local optimum.
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