Optimization and Engineering manuscript No.
(will be inserted by the editor)

Fitting geometric programming models to data

Warren Hoburg - Philippe Kirschen -
Pieter Abbeel

Received: date / Accepted: date

Abstract Motivated by practical applications in engineering, this article con-
siders the problem of approximating a set of data with a model that is compati-
ble with geometric programming (GP). Starting with well-established methods
for fitting max-affine functions, it is shown that improved fits can be obtained
using an extended function class based on the softmax of a set of affine func-
tions. The softmax is generalized in two steps, with the most expressive func-
tion class using an implicit representation that allows fitting algorithms to
locally tune softness. Each of the proposed function classes is directly compat-
ible with the posynomial constraint forms in geometric programming. Through
a limit analysis, max-monomial fitting and posynomial fitting are shown to
correspond to fitting special cases of the proposed implicit softmax function
class. The fitting problem is formulated as a nonlinear least squares regression,
solved locally using a Levenberg-Marquardt algorithm. Practical implementa-
tion considerations are discussed. The article concludes with several numerical
examples from aerospace engineering and electrical engineering.

Keywords Convex optimization - Convex regression - Geometric program-
ming

W. Hoburg - P. Kirschen

Department of Aeronautics and Astronautics, Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge, MA 02139, USA

E-mail: whoburg@mit.edu - kirschen@mit.edu

P. Abbeel
Computer Science Department, University of California, Berkeley, CA 94720, USA
E-mail: pabbeel@cs.berkeley.edu

2 Warren Hoburg et al.

1 Introduction

This article presents methods for fitting geometric programming (GP) models
to data. To provide context, it begins with an overview of GP, followed by a
motivation for fitting models that can be used in GP.

1.1 Overview of geometric programming

First introduced in 1967 by Duffin, Peterson, and Zener [10], a geometric pro-
gram (GP)! is a specific type of constrained, nonlinear optimization problem
that becomes convex after a logarithmic change of variables. Despite signifi-
cant work on early applications in structural design, network flow, and optimal
control [3,24], reliable and efficient numerical methods for solving GPs were
not available until the 1990’s [20]. GP has recently undergone a resurgence as
researchers have discovered promising applications in statistics [5], digital cir-
cuit design [6], antenna optimization [2], communication systems [7], aircraft
design [13], and other engineering fields.

Modern GP solvers employ primal-dual interior point methods [19] and
are extremely fast. A typical sparse GP with tens of thousands of decision
variables and one million constraints can be solved on a desktop computer
in minutes [4]. Furthermore, these solvers do not require an initial guess and
guarantee convergence to a global optimum, whenever a feasible solution exists.

These performance benefits are possible because geometric programs repre-
sent a restricted subset of nonlinear optimization problems. In particular, the
objective and constraints can only be composed of monomial and posynomial
functions.

Monomials In GP, a monomial is a function h(u) : R | — R, of the form

h(u) = cHu?j, (1)

Jj=1
where a € R”, ¢ € R44 and u = (uq,...,uy). Since the exponents a; in (1)
0.7
may be negative and non-integer, expressions like ulu# VY3 are monomials.

Posynomials Like monomials, posynomials are functions g(u) : R | — Ry .
A posynomial has the form

K n
g(w) =Y e [T, (2)
j=1

k=1

1 The “GP” acronym is overloaded, referring both to geometric programs - the class of
optimization problem discussed in this article - and geometric programming - the practice
of using such programs to model and solve optimization problems.

Fitting geometric programming models to data 3

where a; € R™, and ¢, € Ry;. Thus, a posynomial is simply a sum of mono-
mial terms, and all monomials are also posynomials (with just one term). The
expression O.23+u%+0.1u1u2_0'8 is an example of a posynomial in u = (ug, us),
whereas 2u; — u3® is not a posynomial because negative leading coefficients
¢, are not allowed.

1.1.1 Geometric programs in standard form
GPs are often written in the standard form

minimize go(u)
subject to g;(u) <1, i=1,...,n; (3)
hi(w)=1, i=1,...,n,

where each g; is a posynomial, and each h; is a monomial.

The expression GP-compatible will be used in this article to refer to con-
straints that can be written in the form of either the monomial or posynomial
constraints of Problem (3). It will also refer to objective functions that can be
written as posynomials.

1.1.2 Geometric programs in convex form

GPs are of great interest because they become convexr optimization problems
under a logarithmic change of variables. In particular, the transformation

x = logu (4)
converts monomial equality constraints h(u) = 1 to the form
logh(e*) =a’x+ b =0, (5)
and posynomial inequality constraints g(u) < 1 to the form

K

log g(e*) = log Z exp(apx + b) < 0. (6)
k=1

By inspection, (5) is affine in x, and it is straightforward to show that (6) is
convex? in x, since log-sum-exp functions are known to be convex, and con-
vexity is preserved under affine transformations [5]. Thus, (3) is transformed
into a convex optimization problem by the variable change (4).

This article refers to functions as log-convex if they are convex after both
the independent and dependent variables are transformed into logarithmic

space by the variable change (4).

2 A function f(x) is convex if the property f(6x1 + (1 —0)x2) < 0f(x1) + (1 — 0)f(x2)
holds for all 6 € [0, 1] and x1, x2 in the domain of f.

4 Warren Hoburg et al.

1.2 Motivation for fitting geometric programming models to data

The strengths of GP — its speed, its guarantee of global optimality, and its
robustness — make a case for formulating nonlinear optimization problems as
GPs, whenever possible. Although physical models for practical engineering
problems can sometimes be written directly in GP-compatible form, the GP
formulation can prove too restrictive.

Fortunately, certain models that cannot be written directly in GP-compatible
form can still be well approximated by a monomial or posynomial, provided
they exhibit a reasonable degree of log-convexity. Examples of such models
include analytic expressions that are log-convex but are not posynomials, such
as exp(x) or —log(1l — z); empirical data sets; and “black box” simulations.

GP-compatible function fitting allows relationships such as these to be
used in a GP, either as constraints or as an objective function. This creates
an opportunity to incorporate a much broader range of models into the GP
realm; the purpose of this article is to demonstrate methods for doing so.

1.3 Overview of the GP-compatible fitting procedure

In GP-compatible fitting, one is interested in approximating a set of data points
(ui,wi) € RT—:—-‘r X R++, 1=1...m,

with monomial or posynomial constraints. The multivariate data set (u;,w;)

is the input to the fitting procedure and typically captures a relationship

between some variables of interest. There are two restrictions on the input

data: 1) the data must be strictly positive because of the log transformation,

and 2) the data should be well-approximated by a log-convex function, i.e. once

log-transformed, the data should exhibit a reasonable degree of convexity.
The fitting procedure can be summarized in three steps:

1. Apply the log transformation (x;,y;) = (logu;,logw;) to the original data.

Fit a conver (but not GP-compatible) function to the transformed data.

3. Transform the resulting function back to the original space to obtain a
GP-compatible function.

o

The output of the procedure is a single multivariate GP-compatible func-
tion (as opposed to a set of functions or constraints). This function can easily
be incorporated into a GP either in the form of a constraint or an objective
function. As Section 4 will discuss, the convex functions used for step two are
specifically designed to have parallel interpretations as GP-compatible func-
tions. From a purely mechanical perspective, this means that GP-compatible
functions are actually a “free” by-product of step two.

Note that one could conceivably fit monomials and posynomials directly
to the original data, without doing any logarithmic transformations. It turns
out, however, that fitting convex functions to log-transformed data tends to
better capture relationships for data that spans multiple orders of magnitude.

Fitting geometric programming models to data 5

2 Current methods for fitting convex functions to data

To obtain GP-compatible function fits, we first address the problem of fitting
functions that are convex but not necessarily GP-compatible. Consider the
problem of fitting a multivariate function f(x) to a set of m data points

(xi,9;) ER" xR, i =1...m.
With the restriction that f be convex, the fitting problem is
inimi Y — f(X 7
minimize |[¥ — f(X)| (7)

where X € R™*" is a matrix of the x; (independent data), Y € R™ is a vector
of the y; (dependent data), f is the function being fitted?, F is a set of convex
functions, and ||-|| is some norm. This article takes || - || to be the 2-norm, but
the work extends to other fitting criteria. Clearly, the norm (residual) cannot
be small if the data is not well-approximated by any convex function.

As with any regression problem, the specific choice of function class F
can dramatically influence the quality of the resulting model with respect to
the chosen loss function. One common choice is FX the set of maz-affine
functions with K terms:

fua(x) = kinlaXK [br. + agx], (8)

where b € R and a; € R™ are the model parameters. The total number of
model parameters is n, = K(n + 1). It is well known that the supremum over
a set of affine functions is a convex function, thus (8) is convex in x.

This choice is motivated by the fact that any convex function can be ex-
pressed as the point-wise supremum over a (generally infinite) set of affine
functions [5]. That is, F55 can approximate any convex function to arbitrary
precision. Max-affine functions are also appealing from a practical perspec-
tive: they transform to monomial constraint sets (compatible with geometric
programming) under the variable change (4).

Methods for fitting max-affine functions are well established. In 2008, Mag-
nani and Boyd [17] proposed a least-squares partition algorithm that works
well in practice. They also discussed a more general bi-affine function parame-
terization. In 2010, Kim et al. [15] used a similar method to fit max-monomial
models for circuit design. Hannah and Dunson [12] fit max-affine functions
using a statistically consistent adaptive partitioning approach that refines ac-
curacy for increasing K by generating candidate partition splits and selecting
splits greedily. They also describe an ensemble version of their method that
avoids instability in max-monomial fitting [11].

Although max-affine functions are a natural and popular choice, a large
number of affine terms K may be necessary to achieve a desired level of ac-
curacy. This article argues for choosing f from a more general class of convex

3 The mapping f is overloaded: f(x) refers to function evaluation at a single point (f :
R™ — R), whereas f(X) refers to a vectorized version (f : R™*™ — R™).

6 Warren Hoburg et al.

---o= ,
\ a=1.5 ‘.

f(x)

Fig. 1 Influence of a on softmax-affine functions. Each of the softmax-affine functions
plotted above shares the same K = 4 affine terms (the thin dashed lines), but has a different
«. The solid curve corresponds to a max-affine function; the dashed curve corresponds to
a softmax-affine function with @ = 1, and one can interpolate smoothly among these by
varying «. While this figure illustrates the situation in R', the limiting cases extend to
arbitrary dimensions.

functions. Previous work on convex regression has improved fitting algorithms
and guaranteed important statistical properties like consistency, often for the
special case of max-affine functions. In contrast, the emphasis here is on the
mathematical structure of the functions being fitted — the choice of F.

3 Proposed convex function classes
This section introduces two convex function classes: the softmaz-affine class,

FE , and the implicit softmaz-affine class, FK . These can be thought of as
successive generalizations of FX, | a relationship discussed later in this section.

3.1 Softmax-affine functions

The proposed softmax-affine class X, consists of functions of the form

1 K
foua(x) = > log Z exp (a(by + agx)) . (9)
k=1

The addition of the scalar parameter o € Ry U{+00} brings the total number
of parameters to n, = K(n+ 1) + 1. Since log-sum-exp functions are convex
and convexity is preserved under positive scaling and affine transformations [5],
SMA functions are guaranteed to be convex in x for any « > 0.

Fitting geometric programming models to data 7

Limiting behavior As depicted in Figure 1, one can view « as a smoothing
parameter that controls the sharpness of the softmax over the K affine planes.
In the limit of infinite sharpness,

K
. 1
lim —log ; exp (a(bx + ajx)) = max_[by + ajx]. (10)

a— 400

According to Equation 10, softmax-affine functions become max-affine func-
tions in the limit « — 4o00. This limiting behavior implies that for a given data
set (X,Y) and number of affine terms K, there always exist SMA functions
with at least as small a residual as the best possible max-affine fit.

3.2 Implicit softmax-affine functions

The proposed implicit softmax-affine class, FLK,,, expresses the relationship
between x and y via the zero of an implicit function

K

Fisun(,y) =1log > exp (ak(bi + afx —) , (11)
k=1

where each o, € Ry U {400}
Proposition 1 For all x, there exists a unique y such that fISMA(X, y) =0.

Proof For all X, y — fiua(X,y) is a continuous monotone strictly decreasing
function of y, since increasing y decreases every term in the K-term sum.
Moreover, there exists some v~ such that fIS,MA(X7 v7) > 0, and some y*+ such
that fISMA(x,WJF) < 0. Thus by the intermediate value theorem the function
must have a unique zero crossing between v~ and y7T.

Based on Proposition 1, figya is defined such that for all x,

.}EISMA(X7 fisua(x)) = 0. (12)

That is, the predicted value § = fisua(x) is the unique value g such that
fISMA(X7 3}) =0.

Proposition 2 The function x — figua(X) s conver.

Proof Consider any two points (x1,%1) and (xz,2) that both solve fisu(x,y) =
0. By convexity of the log-sum-exp function and preservation of convexity un-
der affine mappings, fisua(0x1+(1—60)%x2,0y1+(1—0)y2) <0V 6 € [0,1]. But
for some 7, fISMA(Hxl +(1—0)x2,79) = 0. Since fISMA is monotone decreasing in
Y, § < 0y1 + (1 — 0)y2. Thus the function value § at any weighted combination
of x points is less than or equal to a weighted combination of the y values —
exactly the definition of convexity.

8 Warren Hoburg et al.

f(x)
f(x)

(a) Varying a1 (leftmost plane) (b) Varying a

Fig. 2 Influence of individual softness parameters aj on ISMA functions. Each of the
functions above shares the same K = 4 affine terms (the thin dashed lines). Setting all of
the softness parameters ay to 1 results in the top curve (dashed line) in each figure. Varying
just one of the four softness parameters then gives intuition about its effect. This figure
illustrates the situation in R!, but the qualitative behavior extends to arbitrary dimensions.

8, . 8
ot 6f
4 4
2 2
0 N 0
= -1 0 1 2 = - 0 1 2 2 -1 0 1 2

(a) MA: RMS = 0.1908 (b) SMA: RMS = 0.1266 (c) ISMA: RMS = 0.0104

Fig. 3 This toy fitting problem illustrates how ISMA functions can significantly outperform
SMA (and therefore also MA) functions. All fits used K = 3 affine terms. Here the data are
samples of the convex function y = max (—6z — 6, %z, %w5 + %:c), which has a sharp kink
near x = —0.8, but gradual curvature elsewhere. The best fit is an ISMA function, which
can conform to the data by adjusting softness locally.

ISMA functions have individual softness parameters ay > 0 for each of the
K affine terms in the model, bringing the total number of model parameters to
n, = K(n+ 2). Figure 2 illustrates the influence of these softness parameters,
and Figure 3 shows how they can improve fitting performance.

Setting all the oy, parameters to the same value «, one recovers the softmax-
affine function class. This implies that the implicit softmax-affine class sub-
sumes the softmax-affine class, and therefore also the max-affine class. As a
result, for a given fitting problem and choice of K, there always exists some
setting of the ay parameters for which the ISMA class performs as well as or
better than the best model in each of the other function classes.

Evaluating ISMA functions No explicit formula is available for evaluating
ISMA functions. Instead, Algorithm 1 gives a Newton-Raphson [25] method
for solving fisua(x,y) = 0. The breakdown y = s + ¢ avoids numerical is-

Fitting geometric programming models to data 9

Algorithm 1 Evaluate y = figya(X)

2k (—bk—&-aix, k=1...K

S <— maxyg 2

t<0

repeat
flog K exp(ag(zr — s —1))
J o — 2n ok explak(zp—s—t))

S~ exp(ar (z—5—F)

tt—f/J

until |f| < machine_precision

return y=s+41

sues associated with computing ratios and logarithms of large exponentials. In
practice, Algorithm 1 reliably converges to machine precision in approximately
5-10 Newton iterations.

4 Transformation to GP-compatible functions

Currently, a common approach to fit GP-compatible functions is to approxi-
mate y as a max-affine function of x, and convert the resulting affine functions
back to equivalent monomial constraints on the GP. Since GPs also admit
posynomial constraints, another approach is to directly fit w as a posynomial
function of u. This approach has been used by a number of authors [8,16,22].
Typically mixed results are reported, with max-monomial models performing
better on data with sharp kinks, and posynomial models performing better
on smoother data [4,17]. As discussed shortly, one benefit of SMA and ISMA
functions is the unification of these two approaches.

4.1 GP interpretation of proposed convex function classes
Each of the convex function classes in this article has a parallel interpretation

as a GP-compatible function. This makes SMA and ISMA functions natural
choices for GP-compatible fitting.

4.1.1 Maz-affine functions as maz-monomial functions

Recall that under the GP log transformation, monomial functions become
affine. Thus, a max-affine model for y,

9 = fua(x), (13)

corresponds exactly to a max-monomial model for w,

- b @ik 14
B [e Hlul]’ (14)

10 Warren Hoburg et al.

which is easily converted to a GP-compatible set of K monomial inequality
constraints on (u, w),

b ™
e
— ditk <1, k=1...K. 15
” I:Tu < (15)
Because they can be fit using established max-affine methods, max-monomial

functions are currently a common choice for GP modeling [11,15].

4.1.2 SMA functions as posynomial functions
Consider the GP log transformation applied to (9). A model,
g = fSMA(X), (16)

corresponds to a posynomial model* for w®,

K n
b ik
w® = E e*x I—qu‘a”“7 (17)
k=1 i=1

which corresponds to a posynomial constraint,

e JJuge < 1. (18)
k=1 =1

1

wOé

] =

For the special case « = 1, SMA functions reduce to posynomials in convex
form (see Equation (6)). That is, the model § > fsya(X; @ = 1) corresponds to
a posynomial constraint on (u,w),

K n
1 by ik
— Gik < . 1
o2 [Jui < (19)
k=1 =1

While the distinction between (18) and (19) appears subtle, it has important
implications for GP modeling. In particular, in existing literature, posynomial
fitting often refers to fitting functions of the form w = g(u), which corresponds
to searching for softmax-affine models, but with the restriction o = 1. Better
fits can be obtained by searching for models of a more expressive posynomial
form w* = g(u).

The softmax-affine function class includes max-affine functions (@ = +00)
and posynomial functions (o = 1) as special cases. Softmax-affine functions
therefore unify max-monomial and posynomial fitting, eliminating the need to
search over multiple model classes.

4 Equation (17) can also be interpreted as a generalized posynomial[4,14] model for w,

1
— K aby n aa;g) o
w = (Zk:1 ek [Ticy ug) :

Fitting geometric programming models to data 11

4.1.3 ISMA functions as implicit posynomial functions
Consider the GP log transformation applied to (11). An ISMA model,
9= fisua(X) (20)
corresponds exactly to a posynomial model,
kb

K
Z wock

k

ugrn = 1 (21)

%
1

n

1 i

which, in turn, corresponds to a posynomial constraint on (u,w),

(&

NE

Ut <1, (22)
1

Wk

Otkbk n
1 i=

=~
Il

By allowing a different ay, in each monomial term, ISMA functions are even
more expressive than SMA or MA models.

5 Fitting model parameters

This section addresses the problem of fitting the proposed function classes to
data. Data fitting and nonlinear regression are well-established fields supported
by an extensive literature. Nevertheless, there is value in describing a practical
end-to-end fitting procedure for the specific cases of SMA and ISMA functions.

5.1 Fitting approach overview

Given m data points (x;,y;) € R™ x R, a least squares fitting objective is

miniﬁmize Z (f(xi:8) — i) (23)

i=1

where f is an instance of one of the convex function classes already presented,
and 8 € R" is a vector that contains the parameters a, b, and « for the
chosen function class. In general, (23) is a nonlinear least squares problem.
The quantity r(8) = f(X;3) —Y is the vector of residuals at each data point,
and the goal is to find a set of parameters 3 for which r(3)"r(/) is minimized.

Consider some initial set of parameters [y, and corresponding residual
r(Bp). For a small change in parameters §, the new residual is approximately

r(Bo +6) = r(Boy) + J4, (24)

12 Warren Hoburg et al.

where J € R™*™ is 9f /08, the Jacobian of f. This suggests a first-order
approximation of (23), rewritten in terms of the parameter update J:

miniémize ' ITIS+ 26" r +r'r (25)
subject to § € A,
where A represents a trust region, imposed to keep the approximation (24)
valid. Most popular algorithms for nonlinear least squares alternate between
solving some form of the trust region subproblem (25), and updating S, r,

and J for those steps that achieve an acceptable improvement in residual. The
high-level approach is sketched in Algorithm 2.

Algorithm 2 Nonlinear least squares fitting
B < Bo
0=0
A <+ initial trust region parameters
repeat
Tirial < f(Xvﬂ""(s) -Y
if trial point acceptable then
B+ B+6
T < Trial
J <+ 0f/0p
A + keep or expand trust region
else
A < constrict trust region
end if
§ + trust-region-subproblem(J,r, A)
until no further improvement
return r,[

5.2 Trust region subproblem

This section describes two formulations of the trust region subproblem (25).

5.2.1 Gauss-Newton update

Gauss-Newton methods [21] find the § that minimizes the quadratic objective
(25), with no trust region bounds. The optimal step is the solution to a set of
linear equations,

J'Jo=—-J"r. (26)

If the computed step does not achieve a satisfactory reduction in residual, a line
search is typically used to refine the step length. The least squares partition
algorithm due to Magnani and Boyd [17] can be viewed as a Gauss-Newton
update for the specific case of max-affine fitting.

Fitting geometric programming models to data 13

5.2.2 Levenberg-Marquardt algorithms

Levenberg-Marquardt (LM) algorithms [18,23] are similar to Gauss-Newton
methods, but with trust region bounds on the parameter update. Instead of
constraining § to lie within the bounds of an explicit trust region, LM algo-
rithms construct the trust region implicitly through a quadratic penalty on 4.
The advantage of this formulation is that the step is simply the solution to a
linear system,

(J"J + Adiag(J'J)) 6 = —J"r, (27)

where A controls the magnitude of the quadratic penalty on §. Various update
schemes for \ exist; in general A\ should be increased when the step fails to
decrease the residual sufficiently, kept constant when the penalty term is not
appreciably affecting the solution, and decreased otherwise.

5.2.3 Comments on scaling to large problems

From a computational perspective, solving the trust region sub-problem is the
dominant cost in the nonlinear least squares solution algorithm [1]. The overall
cost of fitting one of the proposed functions to a data set scales as the cost of
solving the trust region sub-problem, times the number of iterations needed
for convergence, times the number of random restarts used to avoid poor local
optima. The number of iterations and necessary number of random restarts
are user-chosen parameters of the fitting algorithm for which rigorous bounds
are not available.

The computational cost of each LM or trust region sub-problem iteration
is comparable to solving a least squares problem involving J, which grows as
O(mn2) [5]. The number of parameters n, is O(Kn) for all three function
classes, thus the total computational cost of each LM or trust region sub-
problem is O(mK?2n?).

Although the authors have not attempted to improve upon this scaling,
for large problems better performance may be possible by exploiting sparsity.
In particular, even for the smoothed SMA and ISMA function classes, the
parameters ay, by of each affine plane typically have relatively little effect on
the function value at many of the data points, which introduces a nearly-sparse
structure in J. The limiting case is the max-affine function class, for which
the fitting problems for each affine plane actually decouple. The Magnani-
Boyd partition algorithm leverages this by solving K independent least squares
problems, each with an average of m/K data points, for a total cost of O(mn?).
Thus iterative methods that can exploit near-sparsity in J may be capable of
significantly reducing the effect of K on overall computational cost, even for
SMA and ISMA models.

14 Warren Hoburg et al.

5.3 Model Jacobians

This section lists the partial derivatives needed to construct Jacobians for all
the convex function classes presented in Section 3. The parameterization in
terms of log o instead of o implicitly constrains o > 0 and results in better
numerical conditioning.

5.83.1 Maz-affine functions

The partial derivatives for max-affine functions are defined assuming that there
are no ties in the maximum that defines fy;, () [17]. For a practical implemen-
tation it suffices to break ties arbitrarily.

Ofua [1,1 =argmax, by +ajx (28)
db; | 0, otherwise
Ofusn [xT,i=argmax, by +a;x (29)
da; | 0, otherwise
5.3.2 Softmaz-affine functions
O fsua _ exp(a(b; + ajx)) (30)
0b; Zszl exp(a(b + a;jx))
O foma _ x" - exp(a(b; + ajx)) (31)
Oa; Zszl exp(a(by + a;x))
Ofon_ _ Yoic (b + afx) explalbe +ax)) _ (32)
d(log a) S exp(alby +afx))
5.3.83 Implicit softmax-affine functions
0 fisma _ a; exp(ai(bi + aZTX - fISMA)) (33)
Ob; Z?:l (673 eXp(ak(bk + aix - fISMA))
afISMA _ xToy - exp(ai(bi + aZTX - fISMA)) (34)
da; Y agexp(a(by +atx — fin))
0 fisma _ a;(b; +ajx — fisua) exp(ai(b; + ajx — fisua)) (35)

8(log Oéi) Z?:l ap exp(ak (bk + aix - fISMA))

5.4 Parameter initialization

This section describes suitable initial parameter vectors [y for each of the
convex function classes.

Fitting geometric programming models to data 15

5.4.1 Max-affine initialization

The parameter initialization for a max-affine function follows Magnani and
Boyd [17]. They pick K data points {X1,Xa,...,Xk} at random without re-
placement, and partition the data set according to which x is closest (in Eu-
clidean distance, for example). Each partition is then fit locally using least
squares, thereby forming an initial set of max-affine parameters.

In practice, one or more of the randomly-sampled partitions may contain
very few data points, resulting in a singular local fitting problem. In the au-
thors’ implementation, rank-deficient initial partitions are expanded until all
the local fits become well-posed.

5.4.2 Softmaz-affine initialization

Since softmax-affine functions represent max-affine functions in the limit o —
400, max-affine functions provide a convenient initialization for SMA fitting.
In particular, given a max-affine fit By, = (aua, bua), & natural softmax-affine
initialization might be

/BSMA = (aMAa bMA7 Qo = 100)

Too large an initial ag will cause the a-gradient (32) to be extremely small
for all data points. Therefore, a line search over « is implemented to find an
ag that has non-zero J, at some data points.

5.4.8 Implicit softmaz-affine initialization

Given the parameters Ssys = (Asua, Psuas @sua) of a SMA fit, a suitable ISMA
initialization is

ﬂISMA = (aSMAu bsias [aSMA7 QgpAy - - -y aSMAD~

Alternatively, one can initialize ISMA fitting directly from a randomly-seeded
MA fit:

BISMA = (aMA, bMA7 [100,].OO7 ceny 100]).

The implementation used for this work tries both initializations for every ran-
dom seed, and selects the result with the smaller residual.

5.5 Avoiding numerical overflow

Many exp terms appear in both the convex function definitions and their Jaco-
bians. When exponentiated, a modestly large argument can quickly overwhelm
the representation capability of floating point arithmetic. One must therefore
use caution when implementing these equations in software. Two common
situations occur:

16 Warren Hoburg et al.

Ratios of sums of exponentials To handle these, note that
cedP ce(P—s)
Zij\il eort ZL expi=s)’

i.e. one can simply subtract some s from all the exponents in the numerator
and denominator, such that the largest argument to exp is small - say, 0.

(36)

Log sum exp terms To handle these, note that

R 1 Y
- log Z ePi = 5+ > log Z e (Pi=s), (37)
i=1 i=1

for some s chosen to keep the maximum exponential small.

6 Numerical examples and comparisons

Throughout this section, RMS error on the residuals, § — y, is defined as

m

RMS error = %Z(f(xl) —yi)2. (38)

i=1

Absolute error on (x,y) is closely related to percentage error on (u,w), since

W —w w N
~log— =9 —y. (39)
w

6.1 Example: local convex fitting of a scalar function

Suppose that the scalar relationship

u? +3
=" 1<u<
w(u) w2’ 1<u<3 (40)

expresses an important relationship between two variables (u, w) in a GP. Can
this relationship be encoded as a GP-compatible constraint?

Importantly, the expression (u?+3)/(u+1)? is not log-convex for all u > 0
(a simple log-log plot verifies this). Thus there is no hope of algebraically ma-
nipulating (40) into a posynomial constraint. Nevertheless, (40) is log-convex
over the domain of interest, 1 < u < 3. This suggests sampling the function
and fitting one of the proposed convex function classes to the ‘data’. For this
problem a value of K = 2 is used. Figure 4 shows the resulting fits, with
SMA and ISMA functions significantly outperforming MA functions. The fit-
ted models are listed in Table 1.

Fitting geometric programming models to data 17

! 15 2 25 3 1 15 2 25 3 1 1.5 2 25 3
u u u

(a) MA: BMS = 5.24e-3 (b) SMA: BRMS = 2.30e-5 (c) ISMA: BRMS = 7.48e-6

Fig. 4 Generalized posynomial fitting of the function w = (u?+3)/(u-+1)2 over 1 < u < 3.
The function was sampled at 501 logarithmically-spaced points, which were log-transformed
and fitted with MA, SMA, and ISMA functions, each with K = 2 affine terms. Converting
these functions back to to the original (u,w) space turned them into max-monomial and
posynomial models.

Table 1 Convex fits for the fitting problem in Section 6.1.

Function class Fitted function RMS log error
MA @ = max (0.846u~012,0.9894,70-397) | 5.24 x 1073
SMA @34 = 0.154u0-5% 4 0.8470, 7210 2.30 x 10~5

u0.958 u71.22 6
ISMA 1= 0.0658 5= +0.934—575 7.48 x 10

6.2 Performance on randomly-generated convex functions

To test the proposed function classes and fitting algorithms on a wider range
of data sets, a convex function generator was created to produce random in-
stances of convex functions using a stochastic grammar of convexity-preserving
operations and composition rules. This generator was used to produce 20 con-
vex functions R2 — R, and 20 more convex functions R> — R. For example,
the first R? — R function drawn was

f1(z1,z2) = max(log(exp(—0.32724x1 + 0.89165x2) + exp(0.44408z1 — 0.91182x2 + ...
max(—0.10307z; — 2.799z2 + (0.62101z1 — 1.5075x2)% + 0.2417x1 + ...
0.54935x2 — 0.2298x1 — 0.57922z2 + (0.42162z1 + 1.0877x2)2,
log(exp((0.17694x1 + 3.4663x2)?) + exp(max(log(exp((—0.4385z1 + ...
0.3432222)2) + exp(max(—0.83768z1 — 1.3075z2, 0.64915z1 — 0.8314722))),
1566721 + 0.846522))) — 0.39754z + 0.2542925))), (1.2951z1 + 2.7681x2)2).

Input data x for each function consisted of 1000 points drawn from a mul-
tivariate Gaussian with zero mean and identity covariance. For each of the
fitting problems, the fitting process was restarted from 10 random initializa-

18

Warren Hoburg et al.

tions, and the best fit was chosen. Tables 2 and 3 report the average fitting
error and time across the 20 randomly-generated fitting problems considered
in R? and R® respectively. These results show that SMA and ISMA functions
provide consistent benefits in fitting error, when compared with max-affine

functions as a baseline.

Table 2 Fitting error comparison for 20 randomly-generated functions R? — R. Results
are reported across the 20 fitting problems considered. The code ran on a quad-core Intel
Core i7 CPU @ 2.8GHz with 4GB memory.

RMS error as percentage of MA error with K=2
(worst-case, average, best-case)

Average fitting time (s)
per random restart

K MA SMA ISMA MA SMA ISMA
2 | (100.0, 100.0, 100.0) (93.4, 74.8, 56.0) (93.0, 74.5, 55.8) | 0.18 0.28 0.48
3 (77.0, 69.8, 59.1) (24.3,13.0, 5.4) (24.1,13.3, 6.9) | 0.23 0.36 0.90
4 (53.6, 48.6, 39.3) (17.2,10.4, 4.9) (10.7, 7.7, 3.7) | 0.24 0.55 0.95
5 (42.9, 37.9, 26.7) (10.3, 7.0, 3.5) (9.0, 5.5, 3.0) | 0.26 0.54 1.10
6 (36.0, 30.6, 22.1) (9.0, 6.0, 3.3) (7.1, 4.5, 2.7) | 0.28 053 1.56
7 (29.0, 25.7,18.9) (85, 5.2, 28) (64, 3.6, 1.6) | 0.29 0.92 1.44
8 (26.0, 22.6, 17.3) (7.7, 4.6, 2.4) (55, 3.1, 16) | 032 085 1.27
9 (23.6,19.7,16.1) (6.4, 4.0, 23) (5.0, 2.7, 15) | 0.38 1.12 1.55
10 | (19.6,17.3,140) (5.9, 3.6, 21) (43, 2.4, 1.1) | 038 1.22 1.66

Table 3 Fitting error comparison for 20 randomly-generated functions R5 — R.

RMS error as percentage of MA error with K=2
(worst-case, average, best-case)

Average fitting time (s)
per random restart

K MA SMA ISMA MA SMA ISMA
2 (100.0, 100.0, 100.0) (98.3, 90.2, 58.6) (97.6, 89.6, 58.3) | 0.54 0.66 1.40
3 (86.2, 80.1, 60.3) (78.2, 61.1, 32.5) (77.5, 60.4, 32.3) | 0.52 0.74 2.04
4 (76.9, 66.7, 45.3) (56.9, 41.6, 21.6) (56.2, 40.7, 21.1) | 0.62 0.91 2.07
5 (67.6, 58.1, 40.4) (41.8, 29.5, 16.7) (41.1, 28.6, 14.7) | 0.86 0.99 1.98
6 (59.6, 51.6, 33.7) (33.6, 21.5, 13.7) (30.2,19.5, 13.1) | 0.86 1.43 2.38
7 (55.5, 46.4, 26.8) (31.9,19.2, 12.6) (22.7, 15.8,10.7) | 1.15 1.60 2.89
8 (52.1, 41.2, 19.6) (28.6,17.6, 12.1) (18.7,13.7, 9.0) | 1.23 1.78 3.00
9 (48.3, 38.3, 17.1) (24.1, 15.9, 10.8) (17.0, 12.0, 7.9) 1.38 2.39 4.24
10 (43.7, 35.6, 15.7) (21.8,14.4, 9.8) (15.8,11.0, 6.9) | 1.56 3.23 5.05
6.3 Example: power modeling for circuit design
Consider a power dissipation model,
P = Vd2d + 30‘/610167(Vm70.0<‘>vdd)/0.0397 (41)

Fitting geometric programming models to data 19

Table 4 RMS log errors for the circuit design power model in Section 6.3. For K = 2
through K = 4, SMA functions outperformed MA functions by a factor of 2.5 to 44.

K MA SMA ISMA
0.0904 0.0904 0.0904
0.0229 0.0092 0.0091

0.01260 0.00037 0.00034

0.00760 0.00017 0.00014

W N~

which is relevant for GP-based circuit design. This example comes from [6],
and is also studied in [11]. The power relationship (41) is to be modeled as a
posynomial constraint for the domain 1.0 < Vgq < 2.0 and 0.2 < V;, < 0.4.

Starting with 1000 samples of u = (Vgq, Vi), uniformly drawn from the
region of interest, each sample is associated with the corresponding w = P(u).
After applying the log transformation (x,y) = (logu,logw), MA, SMA, and
ISMA functions are fit to the transformed data set. Table 4 gives the resulting
RMS log errors. Of course, any of the resulting models is easily converted to
a posynomial constraint on Vaq, Vin, and P. For example, the K = 3 SMA
model corresponds to a posynomial model,

P24 5 1 V4270112 |7 2g s 105 V™ 136 % 107 Vo b
= LO9Vag™ Vi~ " + 179 X TRED +1.36 x A (42)
th S

which is readily substituted directly into any GP.

6.4 Example: profile drag modeling for aircraft design

In aerospace engineering, profile drag on a wing arises due to viscous skin
friction in the boundary layer surrounding the airfoil. For a given airfoil cross
section shape, the profile drag coefficient (¢q) depends on Reynolds number
(Re), airfoil thickness ratio (), and lift coefficient (¢;). No analytical expres-
sion is available for this relationship, but it can be simulated using the viscous
airfoil analysis program XFOIL [9].

The data for this example consists of 3073 samples, ((Re, 7, ¢;), ¢q)q, gener-
ated for Re ranging from 10° to 107, 7 ranging from 8% to 16%, and ¢; ranging
from 0.01 to stall. As before, a log transformation, (x,y) = (log(Re, 7, ¢;), log ¢q)
is applied. Algorithm 2 then fits MA, SMA, and ISMA functions for a range
of K values.

As shown in Figure 5, for a given number of terms K, an ISMA model
provides the best fit, followed by SMA, and finally by the MA fit. A related
interpretation is that ISMA models can provide a desired level of maximum
RMS error with no more, and often fewer, terms than the best MA model.
Each of the fitted models is directly compatible with geometric programming,
and can therefore represent profile drag relations in practical aircraft design
problems [13].

20 Warren Hoburg et al.

1=0.08

0.08 T
002 002 —e—max-affine
—o—softmax-affine
0.07 ——implicit softmax-affine

& 001 & 001

0.005 f== 0.005

0.2 0.4 08 1.21.6
c

0.02 0.02

RMS log error

& 001 & 001

0.005 0.005

02 04 08 1.216 02 04 08 1216 2 4 6 8 10
G G K

(a) Profile drag data (b) GP-compatible fitting error

Fig. 5 Approximating profile drag for symmetric NACA airfoils. Here the data consists
of 3073 samples of profile drag coefficient ¢4 as a function of lift coefficient (¢;), Reynolds
number (Re), and airfoil thickness coefficient (7). Each model class was fit for a range of K,
with implicit softmax-affine functions achieving the best fit. For each K, 20 random restarts
(initializations) were used, and, of these, the best fit achieved was chosen.

7 Conclusions

This article discusses methods for fitting GP-compatible functions to data.
Specifically, the focus of this work is on fitting special classes of convex func-
tions to logarithmically transformed data. Two convex function classes are in-
troduced: softmax-affine, and implicit softmax-affine. In Section 3, it is shown
that these functions form a hierarchy, with the most general ISMA function
class able to reproduce the other classes of convex functions for special pa-
rameter settings. One can therefore conclude that the best ISMA fit is always
at least as good (and often much better than) the best fit from the more
commonly used max-affine class.

Both of the proposed function classes have parallel interpretations as GP-
compatible posynomials. Indeed, the proposed approach unifies max-affine fit-
ting, max-monomial fitting, and posynomial fitting as special cases of SMA
and ISMA fitting. The most general ISMA function class leverages the full
expressive power of GP, by using an implicit representation corresponding to
a posynomial constraint g([u,w]) < 1.

While the focus of this article is on the form of the function classes and
their connection to GP, the ingredients of a practical fitting algorithm that
can be used to fit these functions to data are also presented.

Acknowledgements The authors thank Aude Hofleitner and Timothy Hunter for their
thorough and insightful comments on the draft. This work was supported by a National
Science Foundation Graduate Research Fellowship.

Fitting geometric programming models to data 21

References

=

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Agarwal, S., Mierle, K., Others: Ceres solver. http://ceres-solver.org

Babakhani, A., Lavaei, J., Doyle, J., Hajimiri, A.: Finding globally optimum solutions
in antenna optimization problems. IEEE International Symposium on Antennas and
Propagation (2010)

Beightler, C.S., Phillips, D.T.: Applied geometric programming, vol. 150. Wiley New
York (1976)

. Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric program-

ming. Optimization and Engineering (2007)

. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New

York, NY, USA (2004)

Boyd, S.P., Kim, S.J., Patil, D.D., Horowitz, M.A.: Digital circuit optimization via
geometric programming. Operations Research 53, 899-932 (2005)

Chiang, M.: Geometric programming for communication systems. Com-
mun. Inf. Theory 2, 1-154 (2005). DOI 10.1516/0100000005. URL
http://portal.acm.org/citation.cfm?id=1166381.1166382

Daems, W., Gielen, G., Sansen, W.: Simulation-based generation of posynomial perfor-
mance models for the sizing of analog integrated circuits. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on 22(5), 517-534 (2003)

Drela, M.: Xfoil subsonic airfoil development system (2000). Open source software
available at http://web.mit.edu/drela/Public/web /xfoil/

Duffin, R.J., Peterson, E.L., Zener, C.: Geometric programming: theory and application.
Wiley New York (1967)

Hannah, L., Dunson, D.: Ensemble methods for convex regression with applications to
geometric programming based circuit design. arXiv preprint arXiv:1206.4645 (2012)
Hannah, L.A., Dunson, D.B.: Multivariate convex regression with adaptive partitioning.
arXiv preprint arXiv:1105.1924 (2011)

Hoburg, W., Abbeel, P.: Geometric programming for aircraft design optimization. ATAA
Journal 52 (2014)

Kasamsetty, K., Ketkar, M., Sapatnekar, S.S.: A new class of convex functions for delay
modeling and its application to the transistor sizing problem [cmos gates]. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on 19(7), 779-788
(2000)

Kim, J., Vandenberghe, L., Yang, C.K.K.: Convex piecewise-linear modeling method
for circuit optimization via geometric programming. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on 29(11), 1823 —1827 (2010). DOI
10.1109/TCAD.2010.2053151

Li, X., Gopalakrishnan, P., Xu, Y., Pileggi, T.: Robust analog/rf circuit design with
projection-based posynomial modeling. In: Proceedings of the 2004 IEEE/ACM Inter-
national conference on Computer-aided design, pp. 855-862. IEEE Computer Society
(2004)

Magnani, A., Boyd, S.P.: Convex piecewise-linear fitting. Optimization and Engineering
10, 1-17 (2009). DOI 10.1007/s11081-008-9045-3

Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics 11(2), pp. 431-441
(1963). URL http://www.jstor.org/stable/2098941

Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM
Journal on optimization 2(4), 575-601 (1992)

Nesterov, Y., Nemirovsky, A.: Interior-point polynomial methods in convex program-
ming, volume 13 of studies in applied mathematics. STAM, Philadelphia, PA (1994)
Nocedal, J., Wright, S.J.: Numerical optimization. Springer Science+ Business Media
(2006)

Oliveros, J., Cabrera, D., Roa, E., Van Noije, W.: An improved and automated design
tool for the optimization of cmos otas using geometric programming. In: Proceedings
of the 21st annual symposium on Integrated circuits and system design, pp. 146-151.
ACM (2008)

22

Warren Hoburg et al.

23.

24.

25.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes 3rd
edition: The art of scientific computing. Cambridge university press (2007)

Wilde, D.: Globally optimal design. Wiley interscience publication. Wiley (1978). URL
http://books.google.com/books?id=XYBRAAAAMAAJ

Ypma, T.J.: Historical development of the newton-raphson method. SIAM review 37(4),
531-551 (1995)

