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Abstract

Due to the coupled nature of aircraft system design, it is important to consider all
major subsystems when optimizing a configuration. This, however, is easier said
than done, particularly because each individual subsystem model can be arbitrarily
complex. By restricting an optimization problem to have a certain mathematical
structure, significantly more effective and tractable solution techniques can be used.
Geometric programming, an example of one such technique, guarantees finding a
globally optimal solution. Although it has been shown that geometric programming
can be used to solve some conceptual aircraft design problems, the required formula-
tion can prove too restrictive for certain relationships. Signomial programming is a
closely related relaxation of geometric programming that offers enhanced expressive-
ness, but without the guarantee of global optimality. Despite this, solution methods
for signomial programs are disciplined and effective. In the present work, signomial
programming models are proposed for optimal preliminary sizing of the vertical tail,
horizontal tail, fuselage, landing gear, and wing of a commercial aircraft with a tube-
and-wing configuration. These models are then combined together to produce a full
aircraft optimization model. Signomial programming’s relaxed formulation allows it
to handle some of the key constraints in tail, fuselage, landing gear, and wing de-
sign, and therefore an improvement in fidelity over geometric programming models is
achieved. The models are readily extensible and easily combined with other models,
making them effective building blocks for future work. A primary contribution of this
work is to demonstrate signomial programming as a viable tool for multidisciplinary
aircraft design optimization.

Thesis Supervisor: Warren W. Hoburg
Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Geometric Programming (GP)1 is an optimization technique that combines the ex-

pressiveness of non-linear objectives and constraints with the mathematical rigor of

convex optimization to provide a powerful approach to solving multidisciplinary air-

craft design optimization problems. For problems that can be formulated as Ge-

ometric Programs (GPs), modern solvers guarantee globally optimal solutions, are

extremely fast, and return local sensitivities at no extra cost, thanks to the principle

of lagrange duality. In previous work, Hoburg [21] shows, firstly, that many models

common to aircraft design can be represented directly in GP-compatible form, and,

secondly, that there are a number of innovative ways of dealing with models that

cannot, including, but not limited to, changes of variables and GP-compatible fitting

methods. Finally, it is also shown that such problems can be solved efficiently using a

standard laptop computer. The aircraft design problem solved in [21] includes models

for steady level flight, range, takeoff distance, landing speed, a sprint flight condition,

actuator disk propulsive efficiency, simple drag and weight buildups, and a beam wing

box structure.

Due to these promising initial results, there is a strong desire to extend the use

of GP for aircraft design both in breadth, by considering more aspects of the aircraft

design problem, and in depth, by increasing the fidelity of the models used. Unfor-
1The “GP” acronym is overloaded, referring both to geometric programs - the class of optimization

problem discussed in this work - and geometric programming - the practice of using such programs
to model and solve optimization problems. The same is true of the “SP” acronym.

13



tunately, the restrictions on the formulation of GPs mean that not all aircraft design

constraints can be readily implemented as part of a GP. A generalization of GP called

Signomial Programming (SP), helps to address this by allowing constraints with less

restrictive formulations [7]. A relatively small relaxation in the restriction on problem

formulation means that SP can handle a significantly more general set of problems

than GP, but this comes at a cost: SP does not boast the same guarantee of global

optimality as GP. Despite this, solution methods remain disciplined and effective by

leveraging a difference of convex program formulation for SP.

Signomial programming is important for aircraft design for two reasons: it allows

a modeller to leverage the speed and reliability of GP on models that are not GP-

compatible, and it enables increasing fidelity where it is not possible to do so in a

GP-compatible way. From the author’s limited experience, only a small proportion

of the constraints in aircraft design models require signomials, if any. In many cases,

however, omitting these constraints would mean failing to capture an important design

consideration. Sometimes, the constraint in question is the only constraint that keeps

one or more design variables meaningfully bounded. Thus, a sacrifice of optimization

quality and robustness is made in exchange for obtaining dual feasibility and/or higher

model fidelity. It is important to stress that the purpose of this work is not to use SP

liberally, but rather to use it in a targeted and precise manner, where the marginal

cost of introducing a signomial constraint can be justified by an adequate increase in

model fidelity or accuracy. Because they result in convex restrictions on the feasible

set, monomial and posynomial constraints are still viewed as the preferred approach,

wherever possible.

In this work, we develop SP models for design of the vertical tail, fuselage, land-

ing gear, horizontal tail, and wing of a commercial aircraft. These models can be

used to determine optimal values for, among other things, the preliminary geometry,

positioning and weight of each subsystem. The models created are readily extensible

meaning constraints can be added and made more sophisticated with ease. We com-

bine these subsystem models in a full configuration model that captures the highly

coupled nature of aircraft design. To the author’s best knowledge, this is the first

14



published work on SP applied to aircraft design.

There exists extensive research in Multidisciplinary Design Optimization (MDO)

methods for conceptual aircraft design [24, 19, 16, 14, 26]. Of the many different

frameworks in the literature, TASOPT [16] is particularly relevant to the present

work because of its use of physics based models, medium fidelity analytical models,

and multidisciplinary considerations of aircraft subsystems. Common challenges faced

in multidisciplinary design optimization include models that are too computationally

expensive to be practical for a designer; final results that are sensitive to the choice of

baseline design; evaluations of black box functions, about which an optimizer knows

little; and coupling of different analysis tools that require delicate wiring between

models, and generally another layer of complexity and opacity.

1.1 Introduction to Geometric Programming

First introduced in 1967 by Duffin, Peterson, and Zener [17], a GP is a specific

type of constrained, nonlinear optimization problem that becomes convex after a

logarithmic change of variables. Modern GP solvers employ primal-dual interior point

methods [28] and are extremely fast. A typical sparse GP with tens of thousands of

decision variables and one million constraints can be solved on a desktop computer in

minutes [7]. Furthermore, these solvers do not require an initial guess and guarantee

convergence to a global optimum, whenever a feasible solution exists. Being able to

find optimal solutions without an initial guess makes the technique particularly useful

for conceptual aircraft design, where it is important that results are not biased by

preconceptions of how an optimal aircraft should look.

These impressive properties are possible because GPs represent a restricted subset

of nonlinear optimization problems. In particular, the objective and constraints can

only be composed of monomial and posynomial functions.

A monomial is a function of the form

m(x) = c

nY

j=1

x

a
j

j , (1.1)
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where aj 2 R, c 2 R
++

, and xj 2 R
++

. For instance, the familiar expression for lift,
1

2

⇢V

2

CLS, is a monomial with x = (⇢, V, CL, S), c = 1/2, and a = (1, 2, 1, 1).

A posynomial is a function of the form

p(x) =

KX

k=1

ck

nY

j=1

x

a
jk

j , (1.2)

where a

k

2 Rn, ck 2 R
++

, and xj 2 R
++

. Thus, a posynomial is simply a sum of

monomial terms, and all monomials are also posynomials (with just one term).

In plain English, a GP minimizes a posynomial objective function, subject to

monomial equality constraints and posynomial inequality constraints. The standard

form of a geometric program in mathematical notation is as follows:

minimize p

0

(x)

subject to pi(x)  1, i = 1, ..., np, (1.3)

mi(x) = 1, i = 1, ..., nm,

where the pi are posynomial (or monomial) functions, the mi are monomial functions,

and x 2 Rn
++

are the decision variables.

Although this form may appear restrictive, surprisingly many physical constraints

and objectives can be expressed in the necessary form [21]. Many relationships that

cannot be formulated exactly as posynomials can be approximated closely, using

methods for fitting GP-compatible models to data [22].

1.2 Introduction to Signomial Programming

Geometric programming is a powerful tool, with strong guarantees. As discussed

previously, however, the formulation can prove restrictive. While changes of variable

present an elegant way of circumventing some formulation obstacles, there may not

always exist a suitable variable change. In particular, the restriction c > 0 in the

definition of a posynomial can be a prohibitive obstacle for a modeler. There are
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many models where being able to use negative coefficients is necessary to accurately

capture a relationship, such as when trying to minimize the difference between two

quantities. An example of this is Lock’s empirical relationship for wave drag [20] that

is commonly used in conjunction with the Korn equation to estimate the drag on a

transonic wing.

CD
wave

� 20(M �Mcrit)
4 (1.4)

A signomial is a function with the same form as a posynomial,

s(x) =

KX

k=1

ck

nY

j=1

x

a
jk

j , (1.5)

except that the coefficients, ck 2 R, can now be any real number. In particular,

they can be non-positive. A signomial program is a generalization of a geometric

program that allows signomial constraints. The ‘difference of convex’ formulation of

a signomial program also permits the objective function to be a ratio of posynomials

and is given by:

minimize
p

0

(x)

q

0

(x)

subject to si(x)  0, i = 1, ..., ns,

pi(x)  1, i = 1, ..., np,

mi(x) = 1, i = 1, ..., nm.

(1.6)

The justification for using this formulation is presented in Appendix A.

Although (1.6) is standard form for a signomial program, the majority of signomial

constraints presented in this work take the form p

1

(x)  p

2

(x) or s(x)  p(x),

because these are often more intuitive, and both can easily be transformed into the

standard form s(x)  0. This follows the geometric programming convention of using

posynomial inequality constraints of the form p(x)  m(x) and monomial equality

constraints of the form m

1

(x) = m

2

(x) [7].

An important point is that adding just one signomial constraint to a geometric

program with arbitrarily many posynomial constraints changes the geometric program

to a signomial program.
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The bad news is that the increased expressiveness of signomial programming comes

at a price: we can no longer guarantee a global optimum, because, unlike with GP,

the log transformation of a signomial program is not a convex optimization problem.

The good news is that there is a disciplined method for solving Signomial Programs

(SPs).

1.3 Signomial Programming Solution Methods

There are a number of different methods for solving SPs, however a common approach

is to find a local GP approximation to the SP, solve this GP and then repeat, using

the optimal solution as the point about to which take the next GP approximation,

until the solution converges [7]. The GP approximation is obtained by approximating

each signomial constraint with a posynomial constraint. The first step, if it has not

already been done, is to express each signomial, s(x), as a difference of posynomials,

p(x) and q(x), and rearrange them to the form of a posynomial less than or equal to

another posynomial.

s(x)  0

p(x)� q(x)  0

p(x)  q(x) (1.7)

Although (1.7) is not a GP-compatible constraint, it can be made into a GP constraint

if posynomial q(x) is replaced with its local monomial approximation, q̂(x;x0
), be-

cause a posynomial divided by a monomial is also a posynomial.

p(x)  q̂(x;x

0
) (1.8)

p(x)

q̂(x;x

0
)

 1 (1.9)

Finding a monomial approximation to a posynomial is equivalent to finding a local

affine approximation to a non-linear function in log space. The best-possible local

18



monomial approximation to a posynomial q(x) at the point x

0 is given by [7]:

q̂(x)

��
x

0 = q(x

0
)

nY

i=1

✓
xi

x

0

i

◆a
i

(1.10)

where xi are the elements of x and:

ai =
x

0

i

q(x

0
)

@q

@xi

. (1.11)

Signomial programming, using formulation (1.6), is an example of ‘difference of

convex’ programming, because the logarithmically-transformed problem can be ex-

pressed as
minimize f

0

(x)� g

0

(x)

subject to fi(x)� gi(x)  0, i = 1, ...,m

(1.12)

where fi and gi are convex. This means that, for the convex (GP) approximation,
ˆ

f(x), of the non-convex (SP) function, f(x)� g(x),

ˆ

f(x) � f(x) 8x. (1.13)

Because of this, the true feasible set contains the feasible set of the convexified prob-

lem, and there is no need for a trust region [6], meaning that there is no need to tune

solver parameters for controlling initial trust region sizes and/or update rules. Solv-

ing an SP is, therefore, considerably more reliable than solving a general nonlinear

program, as there are fewer solver algorithm parameters to tune.

1.4 Structure of this Thesis

The models presented in this work are a compilation of aircraft design constraints and

relationships from a variety of references. These models are therefore not necessarily

original, but their adaptation to signomial programming is.

Each subsystem model presented begins with assumptions underlying the model

followed by a description of the constraints. The intention is to demonstrate the wide
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range of aircraft design constraints that fit naturally into the signomial programming

formulation. Each model is solved using estimates for fixed variables for a reference

aircraft, the Boeing 737-800, and a brief discussion of the results is presented. Al-

though the emphasis of this work is not on these solutions, they do allow us to verify

that the optimization models have feasible solutions and produce credible results.

The models are then combined together in an aircraft model with fully coupled

subsystems as described in chapter 7. In anticipation of further work, three atmo-

spheric models are presented in chapter 8.

To strengthen the claim that signomial programming is a viable tool for aircraft

design, we also compare it to alternative optimization techniques. GP and SP are

compared with general nonlinear programming techniques in chapter 9, and a discus-

sion of the improvement in fidelity achieved by using SP instead of GP is presented

in chapter 10.

All of the geometric and signomial programs presented in this work were composed

and solved with GPkit [9], a python package for defining and manipulating geometric

programming models, using MOSEK [3] with an academic license as the backend

solver.
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Chapter 2

Vertical Tail Model

At a conceptual design level, the purpose of an aircraft’s vertical tail is two-fold.

Firstly, it must provide stability in yaw. Secondly, it must provide adequate yaw

control authority in critical flight conditions. For a multi-engine aircraft, the critical

flight condition is typically an engine failure at low speeds. The vertical tail must be

capable of providing sufficient sideforce in this case [31]. The design of the vertical

tail is therefore coupled to the size of the fuselage and the position of the engines.

2.1 Model Assumptions

The high level assumptions for this model are that the aircraft has a single vertical tail,

the horizontal tail is mounted in a conventional configuration, so as to not require a

reinforced vertical tail structure, and the aircraft has two wing-mounted engines. This

model also assumes that the ultimate high level model’s objective (e.g. minimizing

fuel consumption or operating costs) would apply downward pressure on both weight

and drag.

2.2 Model Description

The vertical tail model has 36 free variables and 36 constraints.
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Table 2.1: Free variables in the vertical tail model

Free Variables Units Description

Afan [m

2
] Engine reference area

Avt [�] Vertical tail aspect ratio

CD
vis

[�] Viscous drag coefficient

CL
vt

[�] Vertical tail lift coefficient

Dvt [N] Vertical tail viscous drag, cruise

Dwm [N] Engine out windmill drag

Lmax
vt

[N] Maximum load for structural sizing

Lv
max

[N] Maximum load for structural sizing

Lvt [N] Vertical tail lift in engine out

Revt [�] Vertical tail reynolds number, cruise

S [m

2
] Vertical tail reference area (full)

Svt [m

2
] Vertical tail reference area (half)

Wstruct [N] Full span weight

Wvt [N] Vertical tail weight

�xlead
v

[m] Distance from CG to vertical tail leading edge

�xtrail
v

[m] Distance from CG to vertical tail trailing edge

c̄vt [m] Vertical tail mean aero chord

�vt [�] Vertical tail taper ratio

⌧vt [�] Vertical tail thickness/chord ratio

b [m] Vertical tail full span

bvt [m] Vertical tail half span

croot
vt

[m] Vertical tail root chord

ctip
vt

[m] Vertical tail tip chord

lvt [m] Vertical tail moment arm

pvt [�] Substituted variable = 1 + 2*taper

qvt [�] Substituted variable = 1 + taper

zc̄
vt

[m] Vertical location of mean aerodynamic chord

WingBox

A [�] Aspect ratio

Icap [�] Non-dim spar cap area moment of inertia

Mr [N] Root moment per root chord

22



Wcap [N] Weight of spar caps

Wstruct [N] Structural weight

Wweb [N] Weight of shear web

⌫ [�] Dummy variable = (t

2
+ t+ 1)/(t+ 1)

tcap [�] Non-dim. spar cap thickness

tweb [�] Non-dim. shear web thickness

Table 2.2: Fixed variables in the vertical tail model

Constants Units Description

CD
wm

[�] Windmill drag coefficient

CL
vmax

[�] Max lift coefficient

Te [N] Thrust per engine at takeoff

V1 [

m
s ] Minimum takeoff velocity

V1 [

m
s ] Cruise velocity

Vne [

m
s ] Never exceed velocity

µ [

N·s
m2 ] Dynamic viscosity (35,000 ft)

⇢c [

kg
m3 ] Air density (35,000ft)

⇢TO [

kg
m3 ] Air density (SL))

tan(⇤vt) [�] Tangent of leading edge sweep (40 deg)

cl
vt

[�] Sectional lift force coefficient (engine out)

dfan [m] Fan diameter

ev [�] Span efficiency of vertical tail

lfuse [m] Length of fuselage

xCG [m] x-location of CG

yeng [m] Engine moment arm

WingBox

Nlift [�] Wing loading multiplier

⇢cap [

kg
m3 ] Density of spar cap material

⇢web [

kg
m3 ] Density of shear web material

�max,shear [Pa] Allowable shear stress

�max [Pa] Allowable tensile stress

fw,add [�] Wing added weight fraction

g [

m
s2 ] Gravitational acceleration

rh [�] Fractional wing thickness at spar web
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w [�] Wingbox-width-to-chord ratio

xCG

yeng

c̄vt

bvt

�xlead
v

lvt

�xtrail
v

lfuse

croot
vt

⇤vt

zc̄
vt

dfan

ctip
vt

Figure 2-1: Geometric variables1 of the vertical tail model (adapted from [4])

The first constraint specifies that the maximum moment exerted by the tail must

be greater than or equal to the moment exerted by the engines in an engine-out

condition. In the worst case scenario, the asymmetric thrust is exacerbated by the

windmill drag of the engine that is inoperative [16].

Lvtlvt � Dwmyeng + Teyeng (2.1)

The moment arm of the vertical tail is the distance from the aircraft Center of Gravity

(CG) to the aerodynamic center of the vertical tail, which is assumed to be at the
1Geometric in the sense that they prescribe geometry, not in the sense of geometric programming,

which derives its name from the same etymology as the geometric mean
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quarter chord. The moment arm is therefore upper bounded by the distance from the

CG to the leading edge of the tail at the root, the height of the mean aerodynamic

chord above the fuselage, the sweep angle, and the mean aerodynamic chord.

lvt  �xlead + zc̄
vt

tan(⇤LE) + 0.25c̄vt (2.2)

Note that this is a signomial constraint. A simple GP-compatible approximation to

this constraint would be to neglect sweep and to assume that the aerodynamic center

is at the leading edge.

The worst case engine out condition is likely to occur during takeoff, when the velocity

is lowest but the engine force required to safely complete takeoff is highest. The

force exerted by the vertical tail in this critical low speed case is determined as the

maximum lift coefficient of the tail and vertical tail reference area multiplied by the

minimum dynamic pressure, which might typically occur at the rotation speed at sea

level. As a conservative estimate, the V

1

speed is used because it is the minimum

speed after which a takeoff can be completed, following a critical engine failure. This

constraint can be made more demanding by assuming a high altitude runway.

Lvt =
1

2

⇢TOV1

2

SvtCL
vt

(2.3)

The 3D lift coefficient is constrained by the airfoil sectional lift coefficient using finite

wing theory [1].

CL
vt

✓
1 +

cl
vt

⇡eAvt

◆
 cl

vt

(2.4)

Meanwhile, the windmill drag can, to a first approximation, be lower bounded using

a drag coefficient and a reference area [16], in this case the area of the engine fan.

Dwm � 1

2

⇢TOV1

2

AfanCD
wm

(2.5)

Afan � ⇡

✓
dfan

2

◆
2

(2.6)

A simple formula relates the reference area, span and mean geometric chord, for a
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trapezoidal tail. The reference area needs to be upper bounded so this becomes a

signomial constraint.

Svt  bvt
croot

vt

+ ctip
vt

2

(2.7)

To further define the geometry of the vertical tail, the x-coordinates of the leading

and trailing edge at the root are related by the root chord. The tail trailing edge is

upper bounded by imposing a constraint that the tail root cannot extend beyond the

end of the fuselage. Together these constraints put an upper bound on the moment

arm of the tail based on the length of the fuselage.

�xtrail � �xlead + croot
vt

(2.8)

lfuse � xCG +�xtrail (2.9)

The mean aerodynamic chord for a trapezoidal wing is defined as:

c̄vt =
2

3

✓
1 + �vt + �

2

vt

1 + �vt

◆
croot

vt

(2.10)

This can be made into a signomial constraint. Though not absolutely necessary, sub-

stitute variables pvt and qvt already appear in the structural model and are therefore

convenient to use here too.

c̄vt 
2

3

✓
1 + �vt + �

2

vt

qvt

◆
croot

vt

(2.11)

2qvt � 1 + pvt (2.12)

pvt � 1 + 2�vt (2.13)

�vt =
ctip

vt

croot
vt

(2.14)

These posynomial constraint substitutions can be reused for the constraint that de-

fines the vertical position of the mean aerodynamic chord, which saves us from needing
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to implement another signomial constraint.

zc̄
vt

=

bvtqvt

3pvt

(2.15)

It is necessary put a lower bound on taper to avoid unacceptably small Reynolds

numbers at the tip [25]. For the purpose of this work, the taper is lower bounded by

the taper ratio of the reference aircraft’s vertical tail [8].

�vt � 0.27 (2.16)

The viscous drag for the tail in cruise is lower bounded using the familiar expression

for drag. A GP-compatible fitted model [22] is used to capture the dependence on

airfoil thickness and Reynolds number based on the mean aerodynamic chord. 50

data points were sampled using XFOIL [15] and a posynomial constraint was then

fitted to these data points.

Dvt �
1

2

⇢cV1
2

SvtCD
vis

(2.17)

CD
vis

0.12 �0.118Revt
0.0016

⌧

0.0082
+ 0.198Revt

0.0017
⌧

0.0077
+ (2.18)

0.19Revt
0.0017

⌧

0.0075
+ 1.83⇥ 10

4

⌧

3.5

Revt
0.49 (2.19)

Revt =
⇢cV1c̄vt

µ

(2.20)

Finally, the tail model adopts the wing structure model from Hoburg [21], which adds

a further 12 constraints. This structural model requires a maximum load, which is

constrained by a maximum dynamic pressure and a maximum lift coefficient.

Lv
max

=

1

2

⇢TOV
2

neSvtCL
vmax

(2.21)

The wing structure model is for a full span wing, whereas, naturally, the vertical tail
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only has a “half” span. For this reason the vertical tail geometry and weight must be

related to the geometry and weight definitions used in the structural model.

2Svt = S (2.22)

2bvt = b (2.23)

2Wvt = Wstruct (2.24)

2.3 Model Results

By using fixed values representative of the reference aircraft and a placeholder objec-

tive function, a solution was obtained for this SP. The placeholder objective function

is a somewhat arbitrary function of viscous drag in cruise and weight, and is intended

to reflect how a higher level objective might apply pressure to the vertical tail model.

0.05Wvt +Dvt (2.25)

Solving the SP took 4 GP solves and 0.48 seconds. A comparison of the optimal

values with the values for the reference aircraft can be seen in Table 2.3.

Table 2.3: Solution comparison with reference aircraft

Design Variable Solution Value Estimate for reference aircraft [8]

Avt [�] 1.95 1.91
bvt [m] 7.16 7.16
Svt [m

2

] 26.3 26.4

The sensitivity to a selection of fixed variables is presented in Table 2.4. Each sensi-

tivity is an estimate for how much the objective function would change given a 1%

increase in the value used for that variable. For example, the objective function value

would decrease by approximately -1.4% if the fuselage length increased by 1%. The

convergence of the objective value for the model is show in Figure 2-2.
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Table 2.4: The vertical tail model is most sensitive to the decision speed, the cruise
velocity and the fuselage length.

Fixed Variable Value Sensitivity

V

1

[m/s] 70 -2.4%
V1 [m/s] 234 1.5%
lfuse [m] 39 -1.4%

Figure 2-2: The vertical tail model solves in 4 GP iterations
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Chapter 3

Fuselage Model

At a high level, the purpose of a conventional commercial aircraft fuselage can be

decomposed into two primary functions: integrating and connecting all of the sub-

systems (e.g. wing, tail, landing gear), and carrying the payload, which typically

consists of passengers, luggage, and sometimes cargo. The design of the fuselage is

therefore coupled with virtually every aircraft subsystem.

Drela [16] performs a detailed, but still approximate, analysis of fuselage structure and

weight, considering pressure loads, torsion loads, buoyancy weight, window weight,

payload proportional weights, the floor, the tail cone, and bending loads. The ma-

jority of the constraints in this model are adapted directly from these equations.

3.1 Model Assumptions

This model assumes a single circular cross section fuselage. This is slightly inaccurate

for narrowbody aircraft like the Boeing 737 and Airbus A320, neither of which have

perfectly circular cross sections. The model also assumes a single vertical tail with

a conventional configuration, and a single aisle. It also assumes that a higher level

model dictates an optimal number of passengers, and again, that drag and weight are

both undesirable.
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3.2 Model Description

The fuselage model has 61 free variables and 63 constraints.

Table 3.1: Free variables in the fuselage model

Free Variables Units Description

Afloor [m

2
] Floor beam x-sectional area

Afuse [m

2
] Fuselage x-sectional area

Ahold [m

2
] Cargo hold x-sectional area

Askin [m

2
] Skin cross sectional area

Dfriction [N] Friction drag

Dfuse [N] Total drag in cruise

Dupsweep [N] Drag due to fuse upsweep

FF [�] Fuselage form factor

Mfloor [N ·m] Max bending moment in floor beams

Pfloor [N] Distributed floor load

Rfuse [m] Fuselage radius

Sbulk [m

2
] Bulkhead surface area

Sfloor [N] Maximum shear in floor beams

Snose [m

2
] Nose surface area

Vbulk [m

3
] Bulkhead skin volume

Vcabin [m

3
] Cabin volume

Vcargo [m

3
] Cargo volume

Vcone [m

3
] Cone skin volume

Vcyl [m

3
] Cylinder skin volume

Vfloor [m

3
] Floor volume

Vhold [m

3
] Hold volume

Vlugg [m

3
] Luggage volume

Vnose [m

3
] Nose skin volume

Wapu [N] APU weight

Wbuoy [N] Buoyancy weight

Wcone [N] Cone weight

Wfloor [N] Floor weight

Wfuse [N] Fuselage weight

Winsul [N] Insulation material weight

Wlugg [N] Passenger luggage weight
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Wpadd [N] Misc weights (galley, toilets, doors etc.)

Wpass [N] Passenger weight

Wpay [N] Payload weight

Wseat [N] Seating weight

Wshell [N] Shell weight

Wskin [N] Skin weight

Wwindow [N] Window weight

�cone [�] Tailcone radius taper ratio (xshell2->xtail)

� [�] Upsweep angle

⇢cabin [

kg
m3 ] Air density in cabin

�x [

N
m2 ] Axial stress in skin

�✓ [

N
m2 ] Skin hoop stress

⌧cone [

N
m2 ] Shear stress in cone

f [�] Fineness ratio

hfloor [m] Floor beam height

hhold [m] Height of the cargo hold

lcone [m] Cone length

lfloor [m] Floor length

lfuse [m] Fuselage length

lnose [m] Nose length

lshell [m] Shell length

npass [�] Number of passengers

nrows [�] Number of rows

p�
v

[�] 1 + 2*Tail taper ratio

tshell [m] Shell thickness

tskin [m] Skin thickness

wfloor [m] Floor width

wfuse [m] Fuselage width

xshell1 [m] Start of cylinder section

xshell2 [m] End of cylinder section

xup [m] Fuselage upsweep point
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Table 3.2: Fixed variables in the fuselage model

Constants Units Description

LF [�] Load factor

Lv
max

[N] Max vertical tail load

Nland [�] Emergency landing load factor

R [

J
(K·kg) ] Universal gas constant

SPR [�] Number of seats per row

Tcabin [K] Cabin temperature

V1 [

m
s ] Cruise velocity

W

00
floor [

N
m2 ] Floor weight/area density

W

00
insul [

N
m2 ] Weight/area density of insulation material

W

0
seat [N] Weight per seat

W

0
window [

N
m ] Weight/length density of windows

Wavg.pass [lbf] Average passenger weight

Wcargo [N] Cargo weight

Wcarryon [lbf] Ave. carry-on weight

Wchecked [lbf] Ave. checked bag weight

Wfix [lbf] Fixed weights (pilots, cockpit seats, navcom)

�h [m] Distance from floor to widest part of fuselage

�p [Pa] Pressure difference across fuselage skin

µ [

N·s
m2 ] Dynamic viscosity (35,000 ft)

⇢1 [

kg
m3 ] Air density (35,000ft)

⇢bend [

kg
m3 ] Stringer density

⇢cargo [

kg
m3 ] Cargo density

⇢cone [

kg
m3 ] Cone material density

⇢floor [

kg
m3 ] Floor material density

⇢lugg [

kg
m3 ] Luggage density

⇢skin [

kg
m3 ] Skin density

�floor [

N
m2 ] Max allowable cap stress

�skin [

N
m2 ] Max allowable skin stress

⌧floor [

N
m2 ] Max allowable shear web stress

bvt [m] Vertical tail span

cvt [m] Vertical tail root chord

fapu [�] APU weight as fraction of payload weight
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ffadd [�] Fractional added weight of local reinforcements

fframe [�] Fractional frame weight

flugg,1 [�] Proportion of passengers with one suitcase

flugg,2 [�] Proportion of passengers with two suitcases

fpadd [�] Other misc weight as fraction of payload weight

fstring [�] Fractional weight of stringers

g [

m
s2 ] Gravitational acceleration

nseat [�] Number of seats

ps [in] Seat pitch

pcabin [Pa] Cabin air pressure (8,000ft)

rE [�] Ratio of stringer/skin moduli

waisle [m] Aisle width

wseat [m] Seat width

wsys [m] Width between cabin and skin for systems

lshelllnose lcone

lfuse

xshell2 , xup
xshell1

cvt

bvt

Figure 3-1: Geometric variables of the fuselage model (adapted from [4])

The fuselage must be wide enough to accommodate the width of the seats in a row

and the width of the aisle.

wfuse � (SPR)wseat + waisle + 2wsys (3.1)

The cross sectional area of the fuselage skin is lower bounded using a thin walled
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wfuse (= 2Rfuse)

hhold

�h

hfloor

waisle

wseat wsys

wfloor

Figure 3-2: Geometric variables (cross-section) of the fuselage model (adapted from [4])

cylinder assumption.

Askin � 2⇡Rfusetskin (3.2)

The cross sectional area of the fuselage is lower bounded using the radius of the

fuselage.

Afuse � ⇡Rfuse
2 (3.3)

The effective modulus-weight shell thickness is lower bounded by assuming that only

the skin and stringers contribute to bending. This constraint also uses an assumed

fractional weight of stringers that scales with the thickness of the skin.

tshell � tskin

✓
1 + fstringrE

⇢skin

⇢bend

◆
(3.4)

The axial and hoop stresses in the fuselage skin are constrained by the pressurization

load due to the difference between cabin pressure and ambient pressure at cruise

altitude. The thickness of the skin is therefore sized by the maximum allowable stress
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of the chosen material.

�x =

�p

2

Rfuse

tshell

(3.5)

�✓ = �p

Rfuse

tskin

(3.6)

�skin � �x (3.7)

�skin � �✓ (3.8)

With the skin thickness constrained we can assert a lower bound for the weight of the

fuselage skin, excluding the tail cone. To do this, we need to constrain the skin surface

area, and, in turn, skin volume for the nose, main cabin, and rear bulkhead. The

surface area of the nose, which is approximated as an ellipse, is lower bounded using

Cantrell’s approximation [16]. The surface area of the hemispherical rear bulkhead is

also constrained.

Snose

8
5 �

�
2⇡R

2

fuse

� 8
5

 
1

3

+

2

3

✓
lnose

Rfuse

◆ 8
5

!
(3.9)

Sbulk = 2⇡Rfuse
2 (3.10)

Vcyl = Askinlshell (3.11)

Vnose = Snosetskin (3.12)

Vbulk = Sbulktskin (3.13)

Wskin � ⇢sking (Vbulk + Vcyl + Vnose) (3.14)

The weight of the fuselage shell is then constrained by accounting for the weights of

the frame, stringers, and other structural components, all of which are assumed to

scale with the weight of the skin.

Wshell � Wskin (1 + ffadd + fframe + fstring) (3.15)

The effective buoyancy weight of the aircraft is also constrained using a specified

cabin pressure at cruise, the ideal gas law, an approximate cabin volume, and the
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difference in pressure with respect to the ambient pressure at cruise. This requires a

signomial constraint.

⇢cabin =

pcabin

RTcabin

(3.16)

Vcabin � Afuse (0.67Rfuse + 0.67lnose + lshell) (3.17)

Wbuoy � (⇢cabin � ⇢1) gVcabin (3.18)

The window and insulation weight is lower bounded using assumed weight/length

and weight/area densities respectively. It is assumed that only the cabin is insulated

and that the cabin takes up approximately 55% of the fuselage cross section.

Wwindow = W

0
windowlshell (3.19)

Winsul � W

00
insul (0.55 (Sbulk + Snose) + 1.1⇡Rfuselshell) (3.20)

The APU is assumed to be proportional to the payload weight. Other payload pro-

portional weight is also accounted for using a weight fraction. This category includes

flight attendants, food, galleys, toilets, furnishing, doors, lighting, air conditioning,

and in-flight entertainment systems. The total seat weight is a product of the weight

per seat and the number of seats.

Wapu = Wpayfapu (3.21)

Wpadd = Wpayfpadd (3.22)

Wseat = W

0
seatnseat (3.23)

The floor must be designed to withstand at least the weight of the payload and seats

multiplied by a safety factor for an emergency landing.

Pfloor � NlandWpay +NlandWseat (3.24)

The maximum moment and shear in the floor are determined based on this design
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load and the width of the floor, assuming that the floor/wall joints are pinned and

there are no center supports.

Sfloor =
Pfloor

2

(3.25)

Mfloor =
Pfloorwfloor

8

(3.26)

The nose must be long enough to have an aerodynamic profile and to accommodate

the cockpit. A reasonable, but arbitrary, lower bound is employed for this work [16].

lnose � 5.2 [m] (3.27)

The floor beam cross sectional area is constrained by the maximum allowable cap

stress and shear web stress for the beams.

Afloor � 1.5

Sfloor

⌧floor

+ 2

Mfloor

�floorhfloor

(3.28)

The seat pitch and the number of rows are fixed and constrain the length of the

shell. Meanwhile, the required height from the widest part of the fuselage to the floor

constrains the width of the floor. Such a constraint could reflect a passenger comfort

requirement or even a window viewing angle requirement. This is another example

of a signomial constraint.

lshell � nrowsps (3.29)

lfloor � 2Rfuse + lshell (3.30)
⇣
wfloor

2

⌘
2

+�h

2 � Rfuse
2 (3.31)

The weight of the floor is lower bounded by the density of the floor beams multiplied

by the floor beam volume, in addition to an assumed weight/area density for the

planking.

Vfloor � Afloorwfloor (3.32)

Wfloor � Vfloor⇢floorg +W

00
floorlfloorwfloor (3.33)
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The tail cone needs to be able to transfer the loads exerted on the vertical tail to

the rest of the fuselage. The maximum torsion moment imparted by the vertical tail

depends on the maximum force exerted on the tail as well as the span and taper

ratio of the tail. This torsion moment along with the cone cross sectional area and

the maximum shear stress of the cone material determines the necessary cone skin

thickness . The cone cross sectional area, which of course varies along the cone, is

coarsely approximated to be the fuselage cross sectional area (i.e. the cross sectional

area of the cone base).

Qv =
Lv

max

bvt

3

1 + 2�v

1 + �v

(3.34)

tcone =
Qv

2Afuse⌧cone

(3.35)

The volume of the cone is a definite integral from the base to the tip of the cone.

This integral is evaluated [16] and combined with Equation 3.34 and Equation 3.35

to give a single signomial constraint on the cone skin volume.

Rfuse⌧cone(1 + p�
v

)Vcone
1 + �cone

4lcone

� Lv
max

bvt
p�

v

3

(3.36)

A change of variables is used for compatibility with the tail model, which uses p�
v

=

1+2�v to make a structural constraint GP compatible. The same taper lower bound

is introduced as in the tail model.

p�
v

� 1.6 (3.37)

The cone skin shear stress is constrained to equal the maximum allowable stress in

the skin material.

⌧cone = �skin (3.38)

The tail cone taper ratio, defined as the ratio of the cone radius at the leading edge

of the tail and the radius at the base of the cone (i.e. the fuselage radius), constrains
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the length of the cone relative to the chord of the tail.

�cone =
cvt

lcone

(3.39)

As with the shell, the cone weight is bounded using assumed proportional weights for

additional structural elements, stringers, and frames.

Wcone � ⇢conegVcone (1 + ffadd + fframe + fstring) (3.40)

The passenger component of payload weight depends on load factor.

nseat = (SPR)nrows (3.41)

npass = (LF )nseat (3.42)

Wpass = Wavg.passnpass (3.43)

The weight of luggage is lower bounded by a buildup of 2-checked-bag customers,

1-checked-bag customers, and average carry-on weight. This constraint is dispropor-

tionately and unnecessarily detailed, but it serves to demonstrate that constraints of

a posynomial form can be made arbitrarily complex for little additional cost, as dis-

cussed earlier. Such modelling could be used in future work to analyze how sensitive

an aircraft design is to the accuracy of the work airlines perform to model expected

baggage loads.

Wlugg � 2Wcheckedflugg,2npass +Wcheckedflugg,1npass +Wcarryon (3.44)

The weight of luggage and cargo is of course tied to the volume and average density

of luggage and cargo. The volume determined by these constraints can be used to

determine required luggage hold volume, which in turn helps to determine the hold

cross sectional area.

Wlugg = Vlugg⇢luggg (3.45)
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Wcargo = Vcargo⇢cargog (3.46)

Vhold � Vcargo + Vlugg (3.47)

Vhold = Aholdlshell (3.48)

Given the required cargo hold cross sectional area, and the fact that the cargo hold

shape is approximately a segment of the circular cross section, we can constrain the

required hold height using an approximation of the area of a circle segment developed

by Harris [18]. This approximation is conveniently in SP form and is guaranteed to

be within 0.1% of the true value for arc angles less than 150

� and within 0.8% for all

other angles.

Ahold 
1

2

hhold
3

wfloor

+

2

3

hholdwfloor (3.49)

This hold height introduces another constraint on the height of the floor beams and

the radius of the fuselage cross section.

Rfuse � �h+ hfloor + hhold (3.50)

The total weight of the payload, and in turn the total weight of the fuselage, can

be lower bounded by adding all of the constituent weights. The fixed weight in-

corporates pilots, cockpit windows, cockpit seats, flight instrumentation, navigation

and communication equipment, which are expected to be roughly the same for all

aircraft [16].

Wpay � Wcargo +Wlugg +Wpass (3.51)

Wfuse � Wapu+Wbuoy+Wcone+Wfloor+Winsul+Wpadd+Wseat+Wshell+Wwindow+Wfix

(3.52)

The drag felt by the fuselage in cruise is lower bounded using a form factor, which is

in turn constrained using a function of the fineness ratio [31].

lfuse � lnose + lshell + lcone (3.53)
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f =

lfuseq�
4

⇡

�
Afuse

(3.54)

FF � 1 +

60

f

3

+

f

400

(3.55)

A lower bound approximation for the friction drag is then the form factor multiplied

by the integral of the turbulent flat plate skin friction coefficient [1] over a cylinder.

A simplistic assumption here is the lack of correction for compressibility effects.

Dfriction � (FF ) (2⇡Rfuse)

✓
1

2

⇢V1
2

◆✓
0.074

⌫

V1
Re

0.8

◆

=) Dfriction � 0.074⇡(FF )RfuseµV1

✓
⇢1V1lfuse

µ

◆
0.8

An additional source of fuselage drag can be parameterized by the upsweep of the

fuselage cone, which is also coupled with the landing gear model. The upsweep angle

can be related to the length of the cone and the radius of the fuselage by the tangent

of the angle. Unfortunately, trigonometric functions are not SP-compatible, so we

must fit it with a function that is. Fortunately, the tangent function is approximately

affine in logarithmic space, so it is well approximated by a monomial function, as

shown in Figure 3-3. This allows us to use an equality constraint.

1.132�

1.038
=

Rfuse

lcone

(3.56)

The drag due to upsweep is lower bounded using a relationship given in [31].

Dupsweep � (3.83Afuse)

✓
1

2

⇢1V

2

1

◆
�

2.5 (3.57)

The total drag is lower bounded by the drag due to friction and the pressure drag

due to the upsweep.

D � Dfriction +Dupsweep (3.58)
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Figure 3-3: A monomial equality constraint closely approximates the tangent function
with maximum error less than 6% for all angles up to 30

�

3.3 Model Results

By using fixed values representative of the reference aircraft and a placeholder ob-

jective function, a solution was obtained for this SP. The placeholder objective is

an arbitrary function of drag and weight chosen to reflect the pressure applied by a

higher level objective function.

0.5Wfuse +Dfuse (3.59)

Solving the SP took 5 GP solves and 0.51 seconds. Even with the arbitrary choice

of objective function, there is good agreement between the optimal values and the

values for the reference aircraft as can be seen in Table 3.3.

The sensitivity to a selection of fixed variables is presented in Table 3.4 and the

convergence of the objective value for the model is show in Figure 3-4.
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Table 3.3: Solution comparison with reference aircraft

Design Variable Solution Value Estimate for reference aircraft

Rfuse [m] 1.86 1.88 [5]
lfuse [m] 39.6 39.1 [5]
Wfuse [kg] 15,367 16,300 [16]

Table 3.4: The fuselage model is most sensitive to the number of seats, the seat width,
and the load factor.

Fixed Variable Value Sensitivity

nseat [�] 186 0.75%
wseat [m] 0.50 0.51%
LF [�] 0.90 0.38%

Figure 3-4: The fuselage model solves in 5 GP iterations
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Chapter 4

Landing Gear Model

The purpose of the landing gear is to support the weight of the aircraft and allow it

to manoeuvre while it is on the ground, including during taxi, takeoff, and landing.

The landing gear typically weighs between three and six percent of the maximum

aircraft takeoff weight [12]. Many of the constraints imposed on landing gear design

are described in [31]. MDO of landing gear is critically important because of how

coupled its design is to other subsystems, particularly the fuselage, wings, and engines.

Chai [12] proposes a MDO tool for landing gear design, considering the angle of pitch

and roll during takeoff and landing, stability at touchdown and during taxi, sideways

turnover angle, braking and steering qualities, gear length, landing gear attachment,

aircraft turning radius, and centerline-guidance taxiing.

4.1 Model Assumptions

The landing gear model assumes a conventional and retractable tricycle landing gear

configuration for narrowbody commerical aircraft such as a Boeing 737 MAX. The

nose gear consists of a single strut supported by two wheels. The main gear consists of

two struts mounted in the inboard section of the wings, each supported by two wheels.

The model only takes one CG location as an input, i.e. it does not consider CG travel.

It is also assumed that the main landing gear retracts towards the centerline of the

aircraft, rotating about the x axis.
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4.2 Model Description

The landing gear model has 44 free variables and 54 constraints.

Table 4.1: Free variables in the landing gear model

Free Variables Units Description

B [m] Landing gear base

Eland [J] Max KE to be absorbed in landing

Fw
m

[�] Weight factor (main)

Fw
n

[�] Weight factor (nose)

Im [m

4
] Area moment of inertia (main strut)

In [m

4
] Area moment of inertia (nose strut)

Lm [N] Max static load through main gear

Ln [N] Min static load through nose gear

Ln
dyn

[N] Dyn. braking load, nose gear

Lw
m

[N] Static load per wheel (main)

Lw
n

[N] Static load per wheel (nose)

Ssa [m] Stroke of the shock absorber

T [m] Main landing gear track

W [N] Total aircraft weight

Wlg [N] Weight of landing gear

Wmg [N] Weight of main gear

Wms [N] Weight of main struts

Wmw [N] Weight of main wheels (per strut)

Wng [N] Weight of nose gear

Wns [N] Weight of nose strut

Wnw [N] Weight of nose wheels (total)

Wwa,m [lbf] Wheel assembly weight for single main gear wheel

Wwa,n [lbf] Wheel assembly weight for single nose gear wheel

�xm [m] Distance b/w main gear and CG

�xn [m] Distance b/w nose gear and CG

tan(�) [�] Angle b/w main gear and CG

tan( ) [�] Tip over angle

dnacelle [m] Nacelle diameter

doleo [m] Diameter of oleo shock absorber

dt
m

[in] Diameter of main gear tires
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dt
n

[in] Diameter of nose gear tires

lm [m] Length of main gear

ln [m] Length of nose gear

loleo [m] Length of oleo shock absorber

rm [m] Radius of main gear struts

rn [m] Radius of nose gear struts

tm [m] Thickness of main gear strut wall

tn [m] Thickness of nose gear strut wall

wt
m

[m] Width of main tires

wt
n

[m] Width of nose tires

xm [m] x-location of main gear

xn [m] x-location of nose gear

xCG [m] x-location of CG incl. LG

ym [m] y-location of main gear (symmetric)

Table 4.2: Fixed variables in the landing gear model

Constants Units Description

E [GPa] Modulus of elasticity, 4340 steel

K [�] Column effective length factor

Ns [�] Factor of safety

W0
lg

[N] Weight of aircraft excluding landing gear

⌘s [�] Shock absorber efficiency

�LG [�] Ratio of max to static load

⇢st [

kg
m3 ] Density of 4340 Steel

�y
c

[Pa] Compressive yield strength 4340 steel

tan(�) [�] Dihedral angle

tan(�min) [�] Lower bound on phi

tan( max) [�] Upper bound on psi

tan(✓max) [�] Max rotation angle

dfan [m] Fan diameter

fadd,m [�] Proportional added weight, main

fadd,n [�] Proportional added weight, nose

g [

m
s2 ] Gravitational acceleration

hhold [m] Hold height

hnacelle [m] Min. nacelle clearance
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nmg [�] Number of main gear struts

nwps [�] Number of wheels per strut

poleo [

lbf
in2 ] Oleo pressure

tnacelle [m] Nacelle thickness

wult [

ft
s ] Ultimate velocity of descent

xCG0 [m] x-location of CG excl. LG

xup [m] Fuselage upsweep point

yeng [m] Spanwise loc. of engines

zCG [m] CG height relative to bottom of fuselage

zwing [m] Height of wing relative to base of fuselage

The difference between the lengths of the main gear and nose gear is constrained by

the vertical position of the wing with respect to the bottom of the fuselage, as well

as the spanwise location of the main gear and the wing dihedral. This relationship is

a signomial constraint.

ln + zwing + ym tan(�) � lm (4.1)

The landing gear track and base are defined relative to the x- and y-coordinates of

the nose and main gear.

T = 2ym (4.2)

xm � xn +B (4.3)

The geometric relationships between the x-coordinates of the main gear, nose gear

and the CG position must be enforced. These relationships are:

xn +�xn = xCG (4.4)

xCG +�xm = xm (4.5)

Because the definition of a signomial program (1.6) does not allow posynomial equality

constraints, we must relax these to be inequality constraints. However, (4.4) and (4.5)

must be satisfied exactly, meaning the constraints that enforce them must be tight.

For each relationship, we have a choice between a posynomial inequality constraint
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xn �xn �xm

xm

B

xup

ym

dnacelle

zCG

yeng

hnacelle

Dt
m

T

lnlm

✓max

�

zwing
�

xCG

Dt
n

dfan

Figure 4-1: Geometric variables of the landing gear model (adapted from [4])
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and a signomial inequality constraint. As will be shown below, the load through the

nose gear and main gear is proportional to the distance from the CG to the main

and nose gear respectively. Because there is downward pressure on these loads -

more load generally means heavier landing gear - there is also downward pressure on

the distances �xn and �xm. We must therefore use a signomial constraint for both

relationships.

xn +�xn � xCG (4.6)

xCG +�xm � xm (4.7)

The maximum static load through the nose and main gear is constrained by the

weight of the aircraft and the relative distances from the CG to the main and nose

gear, respectively.

Ln =

W�xm

B

(4.8)

Lm =

W�xn

B

(4.9)

For the nose gear, there is an additional dynamic load due to the braking condition.

A typical braking deceleration of 3m/s

2 is assumed [31].

Ln
dyn

� 0.31W

lm + zCG

B

(4.10)

The nose gear requires adequate load for satisfactory steering performance. A typical

desirable range is between 5% and 20% of the total load [31].

Ln

W

� 0.05 (4.11)

Ln

W

 0.2 (4.12)

A longitudinal tip over criterion requires that the line between the main gear and the

CG be at least 15� relative to the vertical such that the aircraft will not tip back on its

tail at a maximum nose-up attitude [31]. This puts a lower bound on the x-location
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of the main gear, as measured from the nose of the aircraft. Note that tan(�) is a

design variable here, instead of �, to make the constraint GP-compatible.

xm � (lm + zCG) tan(�) + xCG (4.13)

tan(�) � tan(�min) (4.14)

A lateral tip over constraint is introduced to ensure that an aircraft does not tip over

in a turn [12]. The turnover angle is defined as

tan =

zCG + lm

�xn sin �
(4.15)

where

tan � =

ym

B

. (4.16)

Using the relationship

cos

⇣
arctan

⇣
ym

B

⌘⌘
=

Bp
B

2

+ y

2

m

, (4.17)

this constraint can, perhaps surprisingly, be rewritten in, not only SP-compatible,

but GP-compatible form as

1 � (zCG + lm)
2

(ym
2

+B

2

)

(�xnym tan( ))

2

(4.18)

Typically this angle,  , should be no larger than 63

� [31].

tan( )  tan( max) (4.19)

The aircraft must be able to rotate on its main wheels at takeoff without striking

the tail of the fuselage and, similarly, must be able to land on its main gear without

striking the tail [31]. This constrains the location of the main gear. More specifically,

the horizontal distance between the main gear and the point at which the fuselage

sweeps up towards the tail must be sufficiently small, relative to the length of the
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main gear, such that the angle relative to the horizontal from the main wheels to the

upsweep point is greater than the takeoff/landing angles. The result is a signomial

constraint that imposes a lower bound on the length of the gear and the x-location

of the main gear.
lm

tan(✓max)
� xup � xm (4.20)

The length of the main gear is also constrained by the engine diameter, because

the engines must have sufficient clearance from the ground. A signomial constraint

provides another lower bound on the length of the main gear.

lm + (yeng � ym) tan(�) � dnacelle + hnacelle (4.21)

dnacelle � dfan + 2tnacelle (4.22)

The main gear position in the spanwise (y) direction is, on one side, lower bounded

by the length of the gear itself and, on the other side, upper bounded by the spanwise

location of the engines. Both of these constraints are necessary to allow the landing

gear to retract in the conventional manner for typical narrowbody commercial aircraft.

ym � lm (4.23)

ym  yeng (4.24)

Oleo-penumatic shock absorbers are common to landing gear for large aircraft. Their

purpose is to reduce the vertical load on the aircraft at touchdown, and they are

typically sized by a hard landing condition. The maximum stroke of the shock ab-

sorber can be determined by considering the aircraft’s kinetic energy, and the target

maximum load [33].

Eland =
W

2g

w

2

ult (4.25)

Ssa =
1

⌘s

Eland

Lm�LG

(4.26)
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As a preliminary model, the oleo size can be estimated using historical relations that

are conveniently in monomial form [31]. The length of the main gear must be greater

than the length of the oleo and the radius of the tyres.

loleo = 2.5Ssa (4.27)

doleo = 1.3

s
4�LGLm/nmg

poleo⇡
(4.28)

lm � loleo +
dt

m

2

(4.29)

The wheel weights and sizes can be estimated using historical relations from [13, 31],

which are, again, conveniently in monomial form. The nose gear tyres are assumed

to be 80% of the size of the main gear tyres.

Fwm = Lw
m

dt
m

(4.30)

Wwa,m = 1.2F

0.609
w

m

(4.31)

Lw
m

=

Lm

nmgnwps

(4.32)

Fwn = Lw
n

dt
n

(4.33)

Wwa,n = 1.2F

0.609
w

n

(4.34)

Lw
n

=

Ln

nwps

(4.35)

dt
m

= 1.63L

0.315
w

m

(4.36)

wt
m

= 0.104L

0.480
w

m

(4.37)

dt
n

= 0.8dt
m

(4.38)

wt
n

= 0.8wt
m

(4.39)

Wmw = nwpsWwa,m (4.40)

Wnw = nwpsWwa,n (4.41)

The weight of each strut for both the main and nose struts is lower bounded by
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assuming a thin walled cylinder with constant cross sectional area.

Wms � 2⇡rmtmlm⇢stg (4.42)

Wns � 2⇡rntnln⇢stg (4.43)

The cross-sectional area is itself constrained by the compressive yield of the landing

gear material and the maximum load exerted on each strut.

2⇡rmtm�y
c

� �LGLmNs

nmg

(4.44)

2⇡rntn�y
c

� (Ln + Ln
dyn

)Ns (4.45)

Another, typically more restrictive, structural constraint ensures the struts will not

buckle. This constrains the area moment of inertia of the strut cross section, which

in turn puts upward pressure on the radius and thickness of the struts. Again, a thin

walled cylinder approximation is made. The buckling constraint assumes that no side

force is exerted on the cylinder, which is perhaps a weak assumption due to forces

exerted in braking, for example, and due to the fact that aircraft do not typically

land with the main gear struts perfectly normal to the runway surface.

Lm  ⇡

2

EIm

K

2

lm
2

(4.46)

Im = ⇡rm
3

tm (4.47)

Ln  ⇡

2

EIn

K

2

ln
2

(4.48)

In = ⇡rn
3

tn (4.49)

A machining constraint is used to ensure that the strut walls are not too thin to be

fabricated [12].
2rm

tm

 40 (4.50)

2rn

tn

 40 (4.51)
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In addition, simple retraction space constraints are used to ensure that the struts are

not too wide for the gear to fit inside the fuselage.

2wt
m

+ 2rm  hhold (4.52)

2wt
n

+ 2rn  0.8 [m] (4.53)

Finally, the total landing gear system weight is lower bounded by accounting for the

weights of each assembly. We use an additional weight fraction to account for weight

that is proportional to the weight of the wheels [13].

Wmg � nmg (Wms +Wmw(1 + fadd
m

)) (4.54)

Wng � Wns +Wnw(1 + fadd
n

) (4.55)

Wlg � Wmg +Wng (4.56)

Of course, the aircraft weight and the CG location are both also affected by the weight

and position of the landing gear, and this adds two more constraints, one posynomial

and one signomial.

W � W

0

lg

+Wlg (4.57)

WxCG  W

0

lg

xCG0 +Wngxn +Wmgxm (4.58)

4.3 Model Results

Using fixed values representative of the reference aircraft and a placeholder objective

function, a solution was obtained for this SP. The placeholder objective function for

this model is simply the total landing gear weight, Wlg. This is based on the fact

that having heavy landing gear directly impacts fuel consumption by increasing the

empty weight of the aircraft.

Solving the SP takes 7 GP solves and 1.05 seconds. The result shows good agreement
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with estimates for the reference aircraft, particularly with geometric quantities such

as the gear track and main wheel diameter. A selection of the optimal values are

presented in Table 4.3

Table 4.3: Solution comparison with reference aircraft

Free Variable Solution Value Estimate for reference aircraft [8]

B [m] 13.4 15.6
T [m] 5.7 5.8
dt

m

[in] 44.8 44.5

The sensitivity to a selection of fixed variables is presented in Table 3.4. As can be

seen, the landing gear model is sensitive to the proportional added weight fraction,

which suggests that there is value in developing a more sophisticated model to replace

this low fidelity approach to modelling landing gear weight.

Table 4.4: The landing gear model is most sensitive to the aircraft weight, the pro-
portional added weight fraction of the main gear, and the number of wheels per strut.

Fixed Variable Value Sensitivity

W

0

lg

[N] 8.04e+05 0.82%
fadd,m [�] 1.50 0.49%
nwps [�] 2 0.18%

The convergence of the objective value for the model is show in Figure 4-2. No

objective value is given for the first three solves, because these are all feasibility finding

solves, for which the objective value is a slack variable that does not correspond to

the objective function of the model.
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Figure 4-2: The landing gear model solves in 7 GP iterations
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Chapter 5

Horizontal Tail Model

At a conceptual design level, the purpose of the horizontal tail is threefold: to trim

the aircraft such that it can fly in steady level flight, to provide longitudinal stability,

and to give the pilot control authority over a range of flight conditions.

5.1 Model Assumptions

The horizontal tail model assumes a conventional tail configuration with a low hori-

zontal tail. As with the landing gear model, a single fixed CG location is assumed.

5.2 Model Description

The horizontal tail model has 38 free variables and 40 constraints. It shares many

constraints with the vertical tail model, including the structural model from [21],

basic aerodynamic constraints, and constraints that enforce geometric relationships.

To avoid duplication, we do not repeat any constraints here, but we do describe the

constraints that distinguish the two models.
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Table 5.1: Free variables in the horizontal tail model

Free Variables Units Description

ARh [�] Horizontal tail aspect ratio

CD
h

[�] Horizontal tail drag coefficient

CD0
h

[�] Horizontal tail parasitic drag coefficient

CL
h

[�] Lift coefficient (htail)

CL
ah0

[�] Isolated lift curve slope (htail)

CL
ah

[�] Lift curve slope (htail)

Dht [N] Horizontal tail drag

Kf [�] Empirical factor for fuselage-wing interference

Lh [N] Horizontal tail downforce

Lmax
h

[N] Maximum load

Rec
h

[�] Cruise Reynolds number (Horizontal tail)

S.M. [�] Stability margin

Sh [m

2
] Horizontal tail area

V1 [

m
s ] Freestream velocity

Wht [N] Horizontal tail weight

�xlead
h

[m] Distance from CG to horizontal tail leading edge

�xtrail
h

[m] Distance from CG to horizontal tail trailing edge

↵ [�] Horizontal tail angle of attack

c̄ht [m] Mean aerodynamic chord (ht)

�h [�] Horizontal tail taper ratio

⌧h [�] Horizontal tail thickness/chord ratio

bht [m] Horizontal tail span

croot
h

[m] Horizontal tail root chord

ctip
h

[m] Horizontal tail tip chord

eh [�] Oswald efficiency factor

f(�h) [�] Empirical efficiency function of taper

lht [m] Horizontal tail moment arm

pht [�] Substituted variable = 1 + 2*taper

qht [�] Substituted variable = 1 + taper

xw [m] Position of wing aerodynamic center

yc̄
ht

[m] Spanwise location of mean aerodynamic chord
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WingBox

Icap [�] Non-dim spar cap area moment of inertia

Mr [N] Root moment per root chord

Wcap [N] Weight of spar caps

Wweb [N] Weight of shear web

⌫ [�] Dummy variable = (t

2
+ t+ 1)/(t+ 1)

tcap [�] Non-dim. spar cap thickness

tweb [�] Non-dim. shear web thickness

Table 5.2: Fixed variables in the horizontal tail model

Constants Units Description

ARw [�] Wing aspect ratio

CL
w

[�] Lift coefficient (wing)

CL
aw

[�] Lift curve slope (wing)

CL
hmax

[�] Max lift coefficient

Cm
fuse

[�] Moment coefficient (fuselage)

M [�] Cruise Mach number

S.M.min [�] Minimum stability margin

Sw [m

2
] Wing area

Vne [

m
s ] Never exceed velocity

�xw [m] Distance from aerodynamic centre to CG

↵max,h [�] Max angle of attack, htail

c̄w [m] Mean aerodynamic chord (wing)

⌘h [�] Lift efficiency (diff between sectional and actual lift)

⌘ht [�] Tail efficiency

µ [

N·s
m2 ] Dynamic viscosity (35,000 ft)

⇢ [

kg
m3 ] Air density (35,000 ft)

⇢0 [

kg
m3 ] Air density (0 ft)

tan(⇤ht) [�] tangent of horizontal tail sweep

a [

m
s ] Speed of sound (35,000 ft)

lfuse [m] Fuselage length

wfuse [m] Fuselage width

xCG [m] CG location

|Cm
ac

| [�] Moment coefficient about aerodynamic centre (wing)
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WingBox

Nlift [�] Wing loading multiplier

⇢cap [

kg
m3 ] Density of spar cap material

⇢web [

kg
m3 ] Density of shear web material

�max,shear [Pa] Allowable shear stress

�max [Pa] Allowable tensile stress

fw,add [�] Wing added weight fraction

g [

m
s2 ] Gravitational acceleration

rh [�] Fractional wing thickness at spar web

w [�] Wingbox-width-to-chord ratio

xCG

c̄ht

bht

�xlead
h

lht

�xtrail
h

lfuse

croot
h

c̄w

ctip
h

⇤ht

wfuse

xw

yc̄
ht

c̄ht

�xw

Figure 5-1: Geometric variables of the horizontal tail model (adapted from [4])

The most significant difference is that the vertical tail’s engine out constraint is re-

placed by two sizing constraints for trim and stability. The trim condition requires

that the full aircraft moment coefficient, Cm, be zero.

Cm = Cm
a.c.

+ CL
w

�xw

c̄w

� CL
h

Sh

Sw

lh

c̄w

+ Cm
fu

= 0

Depending on whether Cm
fu

is positive or negative, the resulting constraint is either

64



a posynomial or a signomial constraint.

Cm
a.c.

+ CL
w

�xw

c̄w

+ Cm
fu

 CL
h

Sh

Sw

lh

c̄w

(5.1)

From [25], an equation for longitudinal stability is given by

�xw

c̄w

�
CL

↵

h

Shlh

CL
↵

w

Swc̄w

+

Kfw
2

fuselfuse

CL
↵

w

Swc̄w

⇡ �S.M.

We can use this relationship as a posynomial inequality constraint in combination

with a minimum requirement on the stability margin.

S.M.+

�xw

c̄w

+

Kfw
2

fuselfuse

CL
↵

w

Swc̄w
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(5.2)

S.M. � 0.05 (5.3)

This stability constraint depends on the lift curve slopes of both the wing and the

horizontal tail. The DATCOM formula [25] is an analytic function for estimating the

lift curve slope of a wing or tail, based on empirical results.
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(5.4)

This relationship can be rearranged into a signomial inequality to constrain the lift

curve slope, although some algebraic manipulation is needed to see this.
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The horizontal tail’s lift curve slope is reduce by downwash, ✏, due to the wing and
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fuselage [25].

CL
↵h

= CL
↵h0

✓
1� @✏

@↵

◆
⌘h (5.6)

The downwash can be approximated by the downwash far behind an elliptically loaded

wing.

✏ ⇡ 2CL
w

⇡Aw

(5.7)

=) @✏

@↵

⇡ 2CL
↵w

⇡Aw

(5.8)

We therefore use (5.5) to constrain the isolated lift curve slope, and introduce an

additional posynomial constraint on the corrected lift curve slope.

CL
↵h

+

2CL
aw

⇡Aw

⌘htCL
↵h0

 CL
↵h0
⌘ht (5.9)

As can be seen in Equation 5.2, the fuselage also affects the stability constraint. The

empirical factor, Kf , depends on the position of the wing quarter-chord on the fuselage

as a fraction of fuselage length. This relationship is captured using a GP-compatible

fit of data [25].

Kf � 1.5012

✓
xw

lfuse

◆
2

+ 0.538

✓
xw

lfuse

◆
+ 0.0331 (5.10)

5.3 Model Results

By using fixed values representative of the reference aircraft and a placeholder objec-

tive function, a solution was obtained for this SP. The placeholder objective function

is a somewhat arbitrary function of cruise drag and weight, and is intended to reflect

how a higher level objective might apply pressure to the horizontal tail model.

0.1Wht +Dht (5.11)
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Figure 5-2: GP-compatible fit of Kf data for estimating the effect of wing position on
longitudinal stability

The standalone model takes 5 GP solves and 0.53 seconds to solve and the optimal

values for a selection of key design variables are presented in Table 5.3.

Table 5.3: Solution comparison with reference aircraft

Free Variable Solution Value Estimate for reference aircraft [5]

Aht [�] 6.2 6.2
bht [m] 14.9 14.4
Sht [m

2

] 35.8 32.8

The sensitivity to a selection of fixed variables is presented in Table 5.4 and the

convergence of the objective value for the model is show in Figure 5-3.
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Table 5.4: The horizontal tail model is most sensitive to the fuselage length, tail
efficiency factor, and fuselage width.

Fixed Variable Value Sensitivity

lfuse [m] 40 -1.5%
⌘ht [�] 0.9 -1.1%

wfuse [m] 6.0 0.8%

Figure 5-3: The horizontal tail model solves in 5 GP iterations

68



Chapter 6

Wing Model

The overarching purpose of a commercial aircraft wing is to generate sufficient lift such

that the aircraft can takeoff, climb, cruise, descend, and land safely. In conventional

commercial aircraft, the wings also carry the fuel tanks and the engines.

6.1 Model Assumptions

The wing model assumes a conventional single low-wing configuration. It does not

currently consider wing twist, wing dihedral, or the weight of the engines. It also

does not consider roll or yaw stability, or any control surfaces.

6.2 Model Description

The wing model has 34 free variables and 36 constraints. The majority of these con-

straints are also constraints in the vertical tail and/or horizontal tail models, including

the structural model from [21], basic aerodynamic constraints, and constraints that

enforce geometric relationships.
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Table 6.1: Free variables in the wing model

Free Variables Units Description

ARw [�] Wing aspect ratio

CD
w

[�] Drag coefficient, wing

CD
p

w

[�] Wing parasitic drag coefficient

CL
w

[�] Lift coefficient, wing

CL
aw

[�] Lift curve slope, wing

Dwing [N] Wing drag

Lw [N] Wing lift

Lmax
w

[N] Maximum load

Rew [�] Cruise Reynolds number (wing)

Sw [m

2
] Wing area

V1 [

m
s ] Freestream velocity

Vfuel,max [m

3
] Available fuel volume

W [N] Aircraft weight

Wwing [N] Wing weight

↵w [�] Wing angle of attack
¯

Afuel,max [�] Non-dim. fuel area

c̄w [m] Mean aerodynamic chord (wing)

� [�] Wing taper ratio

⌧w [�] Wing thickness/chord ratio

bw [m] Wing span

croot [m] Wing root chord

ctip [m] Wing tip chord

e [�] Oswald efficiency factor

f(�w) [�] Empirical efficiency function of taper

pw [�] Substituted variable = 1 + 2*taper

qw [�] Substituted variable = 1 + taper

yc̄
w

[m] Spanwise location of mean aerodynamic chord

WingBox

Icap [�] Non-dim spar cap area moment of inertia

Mr [N] Root moment per root chord

Wcap [N] Weight of spar caps
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Wweb [N] Weight of shear web

⌫ [�] Dummy variable = (t

2
+ t+ 1)/(t+ 1)

tcap [�] Non-dim. spar cap thickness

tweb [�] Non-dim. shear web thickness

Table 6.2: Fixed variables in the wing model

Constants Units Description

CL
wmax

[�] Max lift coefficient, wing

M [�] Cruise Mach number

Vne [

m
s ] Never exceed velocity

W0 [N] Weight excluding wing

Wfuel [N] Fuel weight

↵max,w [�] Max angle of attack

cos(⇤) [�] Cosine of quarter-chord sweep angle

⌘w [�] Lift efficiency (diff b/w sectional, actual lift)

µ [

N·s
m2 ] Dynamic viscosity (35,000 ft)

⇢ [

kg
m3 ] Air density (35,000 ft)

⇢0 [

kg
m3 ] Air density (0 ft)

⇢fuel [

kg
m3 ] Density of fuel

tan(⇤) [�] Tangent of quarter-chord sweep angle

a [

m
s ] Speed of sound (35,000 ft)

g [

m
s2 ] Gravitational acceleration

w [�] Wingbox-width-to-chord ratio

WingBox

Nlift [�] Wing loading multiplier

⇢cap [

kg
m3 ] Density of spar cap material

⇢web [

kg
m3 ] Density of shear web material

�max,shear [Pa] Allowable shear stress

�max [Pa] Allowable tensile stress

fw,add [�] Wing added weight fraction

g [

m
s2 ] Gravitational acceleration

rh [�] Fractional wing thickness at spar web

w [�] Wingbox-width-to-chord ratio
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bw

croot

c̄w

ctip

⇤

yc̄
w

Figure 6-1: Geometric variables of the wing model (adapted from [4])

⌧w

tcap

tweb
rh

w

c

¯

Afuel,max

Figure 6-2: Geometric variables of the wingbox cross-section (adapted from [16])

One model that was not presented in previous chapters is a model for Oswald ef-

ficiency, which has a large impact on the drag of a wing. The Oswald efficiency is

constrained by a relationship from [29], in which the authors fit a polynomial function

to empirical data. Given that all polynomials are signomials, this can easily be used

in the SP framework.

e  1

1 + f(�)Aw

(6.1)

f(�) � 0.0524�

4 � 0.15�

3

+ 0.1659�

2 � 0.0706�+ 0.0119 (6.2)

An analogous pair of constraints is also used as part of the horizontal tail model.

The fuel tanks are typically located inside the wingbox. The wingbox therefore needs
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Figure 6-3: Empirical relationship for Oswald efficiency as a function of taper for a
wing with A=10

to be large enough to carry the required fuel for a given mission, a quantity which

itself depends on the wing geometry. To ensure the fuel volume does not exceed the

available wingbox volume, three relationships from [16] are adapted as constraints,

including one signomial constraint.

¯

Afuel,max  0.92w⌧, (6.3)

Vfuel,max  c

2

root

bw

6

(1 + �+ �

2

) cos⇤ (6.4)

Wfuel  ⇢fuel
¯

Afuel,maxVfuel,maxg (6.5)

A model for parasitic drag as a function of lift coefficient, Reynolds number, and

airfoil thickness is used from [21]. The model is an Implicit Softmax Affine (ISMA)

fit [22] of data from XFOIL [15] for a series of NACA 24XX airfoils and has an RMS

error of approximately 2%.
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+ 3.8⇥ 10

�9

⌧

6.2
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C

9.6
D

p

w

C

0.92
L
w

Re

1.4
w

+ 6.14⇥ 10
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6.5
L
w

C

5.2
D

p

w

Re

0.99
w ⌧
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w

(6.6)

Finally, the wing is tasked with lifting the weight of the aircraft, however, this quantity

also depends on the weight of the wing. This recursive relationship is captured in a

pair of simple constraints.

Lw = W (6.7)

W � W

0

+Ww +Wfuel (6.8)

6.3 Model Results

By using fixed values representative of the reference aircraft and a simple objective

of minimizing drag, a solution was obtained for this SP. The standalone model takes

5 GP solves and 0.55 seconds to find a solution and the optimal values for a selection

of key design variables are presented in Table 6.3.

Table 6.3: Solution comparison with reference aircraft

Free Variable Solution Value Estimate for reference aircraft [8]

Aw [�] 9.3 9.5
bw [m] 36.3 35.9
croot [m] 6.5 7.8
ctip [m] 1.3 1.3

The sensitivity to a selection of fixed variables is presented in Table 6.4 and the

convergence of the objective value for the model is show in Figure 6-4.

Table 6.4: The wing model is most sensitive to cruise Mach number, aircraft weight,
and the maximum dynamic pressure never-exceed speed.

Fixed Variable Value Sensitivity

M [�] 0.8 -1.5%
W

0

[N] 5e+05 1.0%
Vne [m/s] 144 0.99%
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Figure 6-4: The wing model solves in 5 GP iterations
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Chapter 7

Combined Aircraft Model

Due to the coupled nature of aircraft system design, it is important to consider all

of the major subsystems when trying to optimize a configuration. Combining all of

the previously described subsystem models into one large full-aircraft optimization

problem allows us to capture the coupled nature of aircraft design.

From a practical perspective, the procedure of combining the subsystem models to-

gether can be expressed in three steps:

1. Create a system-level model A high level objective must be chosen to govern

the combined models. Additionally, any constraints that may not have been

relevant in the context of subsystem modelling need to be introduced.

2. Concatenate the lists of constraints As mentioned previously, each model

is fundamentally just a list of constraints. This means that putting models

together essentially just involves a concatenation operation. No wiring between

models is needed.

3. Identify shared variables To couple these constraints into a single monolithic

optimization problem, the optimizer needs to know which variables are in fact

the same variable. In many cases this means freeing fixed variables. For exam-

ple, whereas the fuselage length is fixed in the context of vertical tail design, it

can and should be a free variable in a full aircraft context.
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7.1 The System-level Model

When fully combined, the aircraft model has 242 unique free variables and 264 con-

straints. The free and fixed variables that make up the high level model and/or

are shared by the sub-models are listed in Table 7.1 and the free variables that are

common to two or more of the subsystem models are illustrated in Figure 7-2.

Table 7.1: Free variables in the high level aircraft model and/or shared by sub-models

Free Variables Units Description

ARw [�] Wing aspect ratio

CD [�] Drag coefficient

CL [�] Lift coefficient

CL
w

[�] Lift coefficient, wing

CL
aw

[�] Lift curve slope, wing

D [N] Total aircraft drag (cruise)

Dfuse [N] Fuselage drag

Dht [N] Horizontal tail drag

Dvt [N] Vertical tail drag

Dwing [N] Wing drag

Lw [N] Wing lift

Lv
max

[N] Maximum load for structural sizing

Sw [m

2
] Wing reference area

VTO [

m
s ] Takeoff speed

V1 [

m
s ] Cruise velocity

W [N] Total aircraft weight

Wfuel [N] Fuel weight

Wfuse [N] Fuselage weight

Wht [N] Horizontal tail weight

Wlg [N] Weight of landing gear

Wpay [N] Payload weight

Wvt [N] Vertical tail weight

Wwing [N] Wing weight

Wzf [N] Zero fuel weight

c̄w [m] Mean aerodynamic chord (wing)
L
D [�] Lift/drag ratio
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⇠ [�] Takeoff parameter

bvt [m] Vertical tail span

cvt [m] Vertical tail root chord

hhold [m] Hold height

lfuse [m] Fuselage length

p�
v

[�] 1 + 2*Tail taper ratio

wfuse [m] Fuselage width

xw [m] Position of wing aerodynamic center

xCG
eng

[m] x-location of engine CG

xCG
fu

[m] x-location of fuselage CG

xCG
ht

[m] Horizontal tail CG location

xCG
lg

[m] x-location of landing gear CG

xCG
vt

[m] x-location of tail CG

xCG
wing

[m] x-location of wing CG

xCG [m] x-location of CG

xTO [m] Takeoff distance

xup [m] Fuselage upsweep point

y [�] Takeoff parameter

zbre [�] Breguet parameter

Table 7.2: Fixed variables in the high level aircraft model and/or shared by sub-models

Constants Units Description

CL
max

[�] Max lift coefficient

M [�] Cruise Mach number

Nlift [�] Wing loading multiplier

Range [nmi] Range

Te [N] Engine thrust at takeoff

Vne [

m
s ] Never exceed velocity

Weng [N] Engine weight

µ [

N·s
m2 ] Dynamic viscosity (35,000 ft)

⇢ [

kg
m3 ] Air density (35,000 ft)

⇢0 [

kg
m3 ] Air density (0 ft)

⇢cap [

kg
m3 ] Density of spar cap material

⇢web [

kg
m3 ] Density of shear web material

�max,shear [Pa] Allowable shear stress
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�max [Pa] Allowable tensile stress

a [

m
s ] Speed of sound (35,000 ft)

cT [

lb
(hr·lbf) ] Thrust specific fuel consumption

dfan [m] Fan diameter

fw,add [�] Wing added weight fraction

g [

m
s2 ] Gravitational acceleration

lr [ft] Runway length

rh [�] Fractional wing thickness at spar web

w [�] Wingbox-width-to-chord ratio

yeng [m] Engine moment arm

xCG
wi

xup

xCG

xCG
vt

xCG
fu

xCG
lg

xCG
ht

Lfuse

c̄

wf

xw

bvt

croot

dfan

xCG
eng

Figure 7-1: Geometric variables that link subsystem models in the full aircraft model
(adapted from [4])
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The objective for the full aircraft model is to minimize fuel weight, using the same

GP-compatible Breguet range formulation introduced in [21].

W � Wzf +Wfuel (7.1)

Wfuel

Wzf

� zbre +
zbre

2

2

+

zbre
3

6

+ ... (7.2)

Range  V1

cTg

L

D

zbre (7.3)

We calculate the total empty weight and drag of the aircraft using simple buildup of

each component’s weight and drag.

Wzf � Wvt +Wfuse +Wlg +Wwing +Wht +Weng +Wpay (7.4)

D � Dvt +Dfuse +Dwing +Dht (7.5)

We also use the same takeoff model as proposed in [21].

⇠ � 1

2

⇢

0

VTO
2

SwCD

Te

(7.6)

1 + y  4

gxTOTe

VTO
2

W

(7.7)

1 � 0.0464

⇠

2.7

y

2.9
+

⇠

0.3

y

0.049
(7.8)

VTO � 1.2

s
2W

CL
max

Sw⇢0

(7.9)

xTO  lr (7.10)

Finally, the constraint for the aircraft center of gravity is also GP-compatible.

WxCG � WengxCG
eng

+WfuelxCG
wing

+WfusexCG
fu

+WhtxCG
ht

+WlgxCG
lg

+WpayxCG
fu

+WvtxCG
vt

+WwingxCG
wing

(7.11)

This in turn requires constraints to model the CG of each subsystem. The landing
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gear CG is constrained by the moment of each set of gear about the nose.

WlgxCG
lg

� Wmgxm +Wngxn (7.12)

The vertical and horizontal tail CGs are bounded by the midpoint of their respective

root chords.

xCG
h/vt

�
�xlead

h

/v +�xtrail
h

/v

2

+ xCG (7.13)

The fuselage CG buildup constraints are adopted directly from [16] and the wing CG

is assumed to coincide with the aerodynamic center.

Fuselage

LandingGear

VerticalTailHorizontalTail

Wing

lfuse

V1

xup

hhold

CL
w

Sw

CL
aw

ARw

c̄w

wfuse

xCG

Lv
max

bvt

Figure 7-2: An illustration of how free variables link each of the subsystem models
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7.2 Model Results

The SP takes 6 GP solves and 3.2 seconds to solve on a standard laptop computer

with a 2.4 GHz Intel Core i5 processor. The optimal values for a selection of key

design variables are presented in Table 7.3.

Table 7.3: Solution comparison with reference aircraft

Free Variable Solution Value Estimate for reference aircraft

Wing

Aw [�] 9.3 9.5
bw [m] 30.2 35.9
Sw [m

2

] 98.0 124.6

Horizontal Tail

Aht [�] 7.7 6.2
bht [m] 10.7 14.4
Sht [m

2

] 14.8 32.8

Landing Gear

B [m] 15.7 15.6
T [m] 5.7 5.8
dt

m

[in] 39.7 44.5

Fuselage

Rfuse [m] 1.86 1.88
lfuse [m] 52.5 39.1
Wfuse [kg] 16,471 16,300

Vertical Tail

Avt [�] 0.71 1.91
bvt [m] 3.71 7.16
Svt [m

2

] 19.4 26.4

The optimal solution is most sensitive to the Mach number in cruise (-1.3%) and the

range requirement (1.1%).

The convergence of the objective value for the model is show in Figure 7-3. As with

the landing gear model, there are no objective values for the first three iterations

because these are feasibility finding solves, for which the objective function is a slack

variable that does not correspond to the objective function of the model.
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Figure 7-3: The aircraft model solves in 6 GP iterations
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Chapter 8

Atmosphere Model

Lift, drag, Reynolds number, and Mach number are all functions of atmospheric

quantities, and, in turn, altitude. There is, therefore, value in making cruise alti-

tude a decision variable over which to optimize. To do this, we need to model how

atmospheric quantities change with altitude as part of the optimization problem.

Conveniently, analytical standard atmosphere models fit naturally into the signomial

programming framework. In this chapter we present two such models, one for the

Troposphere and one for the Tropopause, along with a model for viscosity that can

be used in conjunction with both models. With these three models, the temperature,

density, pressure, and viscosity of air can all be modelled for altitudes up to 20 km,

sufficiently high to cover all realistic flight altitudes for a commercial aircraft.

Table 8.1: Free variables in the atmospheric models

Free Variables Units Description

T [K] Temperature

µ [

kg
(m·s) ] Dynamic viscosity

⇢ [

kg
m3 ] Density

h [m] Altitude

p [Pa] Pressure
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Table 8.2: Constants in the atmospheric models

Constants Value Units Description

C1 1.458e-06 [

kg
(K0.5·m·s) ] Sutherland coefficient

L 0.0065 [

K
m ] Temperature lapse rate

R 287 [

J
(K·kg) ] Specific gas constant (air)

T0 288.1 [K] Temperature at sea level

Ts 110.4 [K] Sutherland Temperature

g 9.81 [

m
s2 ] Gravitational acceleration

p0 1.013e+05 [Pa] Pressure at sea level

p1 22,630 [Pa] Pressure at 11 km altitude

8.1 Troposphere

The Troposphere is the layer of atmosphere between sea level and approximately

11 km (36,000 ft) altitude. It is characterized by a temperature profile that decreases

linearly with altitude [2].

T = T

0

� Lh (8.1)

The ideal gas law relates air density to pressure and temperature.

⇢ =

p

RT

(8.2)

Combining this equation of state with the hydrostatic equation, and Equation 8.1,

we obtain a relationship for the pressure variation as a function of temperature [2].

p

p

0

=

✓
T

T

0

◆ g

RL

(8.3)

We now have three equations to model pressure, density, and temperature as functions

of altitude. These equations have the potential to form either a geometric program

or a signomial program. Because all three are physical relationships, their respective
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constraints must be satisfied with equality to be valid. Equation 8.2 and Equation 8.3

can clearly be used as monomial equality constraints, assuming g, R, and L are

constant. Handling Equation 8.1 is more complicated.

If we can guarantee that there is exclusively downward pressure1 on temperature,

then it can be used as the basis for a signomial constraint.

T + Lh � T

0

(8.4)

An example where this might arise is when trying to maximize range for a jet propelled

aircraft, where downward pressure on T arises through downward pressure on Mach

number for a given flight true air speed.

On the other hand, if there is exclusively upward pressure on temperature, the rela-

tionship can be used as the basis for a GP constraint.

T + Lh  T

0

(8.5)

This might arise when a model’s other constraints want to maximize air density, for

example to maximize the endurance of a propellor aircraft.

Unfortunately, cases can easily arise in which the pressure(s) on temperature are not

known apriori. In such cases it is necessary to treat the relationship as a signomial

equality constraint. A comprehensive discussion of implementing signomial equality

constraints is not attempted here. Instead, we briefly address possible ways of han-

dling them. Although it may seem like an obvious solution at first glance, simply

using two inequalities with opposing  and � operators is not an effective method

for enforcing equality. This is because the feasible set that results from this program

is a single point, which interior point method solvers find difficult to handle. A crude,

but relatively effective, way of overcoming this hurdle is to multiply one of the sides of

one of the conjugate constraints by a number close to, but not exactly, 1 (e.g. 1.01).

This makes the feasible set larger than a single point and allows optimizers to per-

1pressure in this context refers to optimization pressure, the direction in which a given objective
function pushes the decision variables
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form more effectively. Using this technique equality can be approximately enforced

as follows:

T + Lh  T

0

(8.6)

T + Lh � 1.01T

0

(8.7)

Another, more effective, technique is to successively find the local monomial approxi-

mation of the left hand side of the constraint and pose it as a local monomial equality

constraint at each iteration of an SP solve.

(T + Lh)MA = T

0

(8.8)

8.2 Tropopause

The region of atmosphere above the Troposphere is an isothermal layer called the

Tropopause that extends to an altitude of 20 km [2].

T = 216 K (8.9)

The ideal gas law is, of course, still valid in this region, but because of the constant

temperature, the pressure now decreases according to an exponential function of

altitude.
p

p

11

= e

� g

RT

(h�11000 [m]) (8.10)

At first glance, this relationship does not appear to be compatible with either GP or

SP. However, recall that exponential functions can be well approximated by a Taylor

series expansion.

e

x ⇡ 1 + x+

x

2

2!

+

x

3

3!

... (8.11)

This means that, after some algebraic manipulation, we can obtain a relationship
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that could be used in a geometric or signomial program.
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✓
gh
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◆
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(8.12)

where k is constant. As with the Troposphere model, this relationship needs to be

satisfied with equality. Either of the methods described above can be used to achieve

this.

8.3 Sutherland Viscosity Model

The other altitude-dependent atmospheric quantity of interest is air viscosity, which

affects Reynolds number. The Sutherland model [32] gives dynamic viscosity as a

function of temperature and is therefore readily combined with the above atmosphere

models.

µ =

C

1

T

3
2

T + TS

(8.13)

Although this relationship could be relaxed to either a signomial or posynomial in-

equality constraint, as with the previous models, it must be satisfied with equality.

As before, there are a number of possible methods for handling this. In this case,

because the posynomial term can be well approximated by a monomial, it is possi-

ble to take a single monomial approximation about, for example, sea level, and use

this as an approximate model, without needing to find a new approximation at each

iteration. On its own, this model is therefore GP-compatible.

µ =

C

1

T

3
2

(T + TS)MA

=

C

1

T

3
2

6.64T

0.72
(8.14)

It can be seen in Figure 8-1 that the error for all temperatures within the Troposphere

and Tropopause is less than 1%.
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Figure 8-1: A monomial equality constraint closely approximates Sutherland’s law for
all temperatures within the Troposphere and Tropopause
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Chapter 9

Comparison with General Nonlinear

Programming Techniques

In [21] the author demonstrates that simple aircraft design problems can be solved

quickly, effectively and easily using geometric programming. In the preceding chapters

we have demonstrated that more sophisticated conceptual aircraft design problems

can be solved quickly, effectively and easily using signomial programming. These

claims of speed, effectiveness and ease have limited value, however, without a bench-

mark or comparison against an existing alternative technique.

We therefore set out to compare geometric and signomial programming with general

Nonlinear Programming (NLP) techniques in the context of aircraft design problems.

To achieve this, a tool was created that automatically generates the necessary files to

solve any geometric or signomial program using MATLAB’s R� [27] fmincon solver,

a popular and commercially available general purpose optimization tool.

Specifically, our goal was to compare the time taken to solve aircraft design problems

and the quality of the solution found, as measured by the value of the optimal cost.

We were also interested in a less quantifiable metric of how easy it is for a user to

obtain a meaningful solution and how sensitive this process is to the information the

solver is given.

fmincon is a MATLAB function for finding the minima of constrained nonlinear

optimization problems. It comprises a number of different solvers, including both an
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interior point method solver and a Sequential Quadratic Programming (SQP) solver.

Interior point methods are a powerful class of algorithm that, as mentioned previously,

are the method of choice for solving log-transformed GPs, and therefore, by extension,

SPs. Though originally derived for solving linear programs, and most frequently used

for convex optimization problems, interior point algorithms have also been developed

and successfully applied to solving nonlinear, nonconvex problems [34]. The fmincon

implementation of an interior point method is based on work presented in [10], [11]

and [35].

SQP is one of the most effective methods for nonlinearly constrained optimization [30]

and is widely used in many fields, including aircraft design [23]. The fmincon imple-

mentation of the SQP algorithm is largely based on the algorithm described in [30].

Given the widespread use and popularity of interior point methods and SQP, we

chose to compare both algorithms with the techniques of geometric and signomial

programming. These techniques (e.g. geometric programming) and algorithms (e.g.

interior point method) are not analogous though - after all, one uses the other - so

what does this actually mean? Recall that there are three key steps to solving an

optimization problem using geometric programming:

1. Formulate the problem as a geometric program

2. Transform the problem into logarithmic space using a change of variables

3. Solve the transformed problem using an interior point method

For the purpose of this discussion, geometric programming refers only to steps (2)

and (3), because, for all comparisons presented here, we used the same formulation

of each problem, and only varied the solution technique. Similarly, in this chapter

signomial programming refers to the process of solving a signomial program, once it

has been formulated.

Therefore, the only fundamental difference between solving a GP using fmincon’s

interior point method and using a geometric programming package, such as GPkit, is

the log transformation used by the latter to make the problem convex.
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The comparison between signomial programming and the general NLP methods is

slightly different. As discussed previously, the difference between solving a GP and

solving an SP is significant when using a geometric programming solver, because

the former is convex in log space, whereas the latter is not. On the other hand,

solving a signomial program using an NLP solver is, in general, no more difficult that

solving a geometric program using an NLP solver, because neither problem is convex

without the logarithmic transformation. So, when comparing signomial programming

(i.e. GPkit) with an interior point method (i.e. fmincon), we are fundamentally

comparing using an interior point method on a sequence of convex problems, with

using an interior point method on a single non-convex problem.

The measures of computational cost presented in this chapter must be taken with

a grain of salt, as the alternatives are not implemented in the same programming

language, the overhead cost associated with each implementation is not closely con-

trolled, and the cost is measured in wall clock time, as opposed to CPU time. Al-

though one could argue that a more rigorous comparison would use the same interior

point method solver for both the geometric/signomial programming approach and the

general NLP approach, the MOSEK interior point solver used by GPkit is heavily

tailored for convex problems [3] and users are therefore discouraged from employing

it to solve non-convex problems, such as a GP without the change of variables. Mean-

while, fmincon’s interior point method implementation is based on algorithms that

were designed to be robust to non-convexity [11].

fmincon has a number of options designed to improve its performance. For example,

it is possible to give gradients of the objective and constraints as inputs. In the results

presented below, fmincon had access to analytical gradients for the objectives and

constraints, computed as follows. The gradient of a signomial,

s(u) =

KX

k=1

ck

nY

j=1

u

a
jk

j (9.1)
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can be computed as
@s(u)

@ui

=
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k=1

ckaiku
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ik
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i

nY

j=1,j 6=i

u

a
jk

j (9.2)

The gradients were checked using fmincon’s DerivativeCheck feature.

fmincon requires an initial guess for each design variable, regardless of which solution

algorithm is used. By contrast, the interior point methods used to solve geometric

and signomial programs do not require an initial guess, although the signomial pro-

gramming heuristic requires initial guesses for variables that appear in signomial

constraints.

To ensure a comprehensive comparison, we tested several combinations of the differ-

ent options, as well as a range of initial guesses, for two different test problems: one

geometric program and one signomial program. We began by performing a compari-

son on a relatively small GP, before comparing the larger landing gear SP model from

chapter 4.All tests are performed on a laptop computer with a 2.4 GHz Intel Core i5

processor, using MATLAB 8.5.0.

9.1 Simple UAV Design Geometric Program

As a first test case we used the simple UAV design problem from [21]. This problem

is a GP with 10 decision variables and 8 constraints.

minimize D

subject to CD � CD
A0

S

+ kCfSwet,ratio +
C

2

L

⇡Ae

Ww � Wc1S +Wc2

NultA
1.5
p
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D =
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GPkit solves this problem in 0.015 seconds and finds a guaranteed globally optimal

cost of 303.1 N. We tested the exact same problem using fmincon with both the

interior point method solver and the SQP solver, as well as a variety of different

settings: with and without gradients; with and without an explicit distinction between

linear constraints; and with different initial guesses.

Table 9.1: Initial guesses used for simple UAV design case

Variable Optimal value A B C D E
from GP Ones Almost exact Order of Order of Order of
solution solution magnitude magnitude magnitude

(floor) (round) (mix)

A 8.46 1 8 1 10 10
CD 0.02059 1 0.02 0.01 0.01 0.1
CL 0.4988 1 0.5 0.1 1 1
Cf 0.003599 1 0.004 0.001 0.01 0.01
D 303.1 1 300 100 100 100
Re 3.675⇥ 10

6 1 4⇥ 10

6

1⇥ 10

6

1⇥ 10

7

1⇥ 10

6

S 16.44 1 20 10 10 10
V 38.15 1 40 10 100 10
W 7341 1 7000 1000 10,000 10,000
Ww 2401 1 2000 1000 1000 1000

The exact initial guesses used are listed in Table 9.1. Option A is an arbitrary initial

guess of one for every variable. Without any understanding of a problem, let alone

prior knowledge of the solution, this might represent the best initial guess a user can

provide. It is also an appealing initial guess because it requires effectively no effort

from the user.

Recognizing that the completely naive option A might be asking too much of most

optimizers, initial guess B is, at the opposite extreme, the globally optimal solution

rounded to one significant figure, where the optimal solution is taken from the GP
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solution. This is, of course, an unrealistic initial guess, but it tests the optimizer

on what should be an easy problem. The intention behind rounding to one signifi-

cant figure is to try and prevent any gradient based searching from getting stuck in

numerical noise.

Initial guesses C, D and E are based on the order of magnitude of the optimal solution.

These are intended to be intermediate guesses between options A and B. They are

more realistic than initial guess B and more informative than initial guess A, and

are intended to represent an initial guess that a user might be able to provide in a

practical context.

Two different interpretations of the order of magnitude are used: the “floor” and

“round” estimates. Using mathematical notation for the floor and round operators,

initial guesses C and D are given by

x

0

C = 10

blog10(x⇤
)c (9.3)

and

x

0

D = 10

[log10(x
⇤
)]

, (9.4)

respectively, where x

⇤ is the optimal value as obtained from the GP solution.

Initial guess E is a combination of initial guesses C and D, with one extra perturbed

value (CD). These three fairly similar variants are intended to test how sensitive the

solution is to slight changes in the assumed order of magnitude of the final solution.

It should be noted that none of these initial guesses, besides perhaps option A, are

a fair comparison with GP because the starting point for an interior point solver is

typically chosen automatically and not informed by the user.

The results of the comparison tests are listed in Table 9.2. As can be seen, the

solution obtained is highly dependent on the solver, the settings, and the choice of

initial guess.

96



Table 9.2: Simple UAV design results for fmincon using different inputs

Method Initial Objective Constraint Time Cost
guess gradients gradients (s)

GP - - - 0.015 303.14
IP A N N > 8 hours N/A
IP A Y Y 651.1 -6052.5 1

IP B N N 10.0 303.14
IP B Y N 18.1 303.14
IP B N Y 131.2 303.14
IP B Y Y > 8 hours N/A
IP C N N 3.0 303.14
IP C N Y 7.4 303.14
IP C Y Y 7.3 303.14
IP D N N 15.5 303.14
IP D Y N 6.8 303.14
IP E N N 47 303.14
IP E Y N 75 303.14
IP E Y Y 28 303.14
SQP A N N 0.3 303.14
SQP A Y N 0.3 303.14
SQP A Y Y 0.4 6865.8 1

SQP B N N 0.1 304.95
SQP B Y N 0.1 304.95
SQP B N Y 0.1 304.95
SQP B Y Y 0.0 304.95
SQP C N N 0.3 -6.2662e+05 1

SQP C Y N 12.6 -8.4531e+16 1

SQP C N Y 0.4 -59355 1

SQP C Y Y 3.7 1144.7 1

SQP D N N 11.0 438.66 1

SQP D Y N 0.8 972.45 1

SQP D N Y 0.9 2869.2 1

SQP D Y Y 0.9 618.98 1

SQP E N N 0.2 337.8
SQP E Y N 0.2 337.8
SQP E Y Y 0.1 337.8
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A few observations can be made from the results:

1. Giving the initial guess of all ones (choice A) did not work for the interior point

solver. The solver either did not converge within a reasonable amount of time,

or converged to an infeasible point.

2. With other initial guesses, the interior point solver was typically able to find

the optimal solution, although the solution time was highly dependent on the

initial guess and whether gradients were used. The fastest interior point solve

took 200 times longer than then GP solve.

3. Giving analytic gradients did not necessarily help, and in some cases hindered

the solver.

4. The SQP solver typically converged much faster than the interior point solver,

but, from the order of magnitude initial guesses, either converged to an infeasible

point or converged to a point that had a 10% higher cost than the true optimum.

5. Surprisingly, the SQP solver performed best without analytic gradients and with

the most naive initial guess, taking only 20 times as long as the GP solve to

find the optimal solution.

6. Despite the fact they are relatively similar, there were significant and unpre-

dictable differences in performance between the three order of magnitude initial

guesses for both solver algorithms. For example the interior point solver took

up to 15 times longer to solve from initial guess E than from initial guess C.

point solver.

They key take-away from this experiment is that, even for a relatively small GP, both

of the general NLP methods are very sensitive to the choice of initial guess and are

markedly slower than the GP solver.

1Infeasible solution
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9.2 Landing Gear Signomial Program

We next compare the NLP methods with signomial programming, using the landing

gear model presented in chapter 4 as a test case. In addition to being a signomial,

rather than geometric, program, this problem is also larger than the UAV design test

case with 44 decision variables and 54 constraints.

GPkit is able to solve the SP using 7 GP solves in 1.16 seconds, achieving an optimal

cost (weight) of 14,630 N, using an initial guess of one for each design variable that

is part of a signomial constraint. The results achieved using the fmincon solvers are

presented in Table 9.3. We used both the interior point method and SQP solvers with

the same types of initial guesses as in the previous example, this time based on the

optimal solution of the SP.

We can make a few observations from these results:

1. All but one of the SQP solves converges to an infeasible solution

2. The interior point algorithm converges to a feasible solution in most cases, but

is only capable of achieving a solution that has a cost 5% higher than the SP

optimal solution, even when starting from near the optimal solution.

3. Once again the solution time is highly dependent on the choice of initial guess.

The fastest interior point solution from an order-of-magnitude initial guess is

seven times longer than the GPkit solution time, and only attains a cost 10%

higher than the SP solution.

Given that the central theme of this thesis is that SP is a viable technique for aircraft

design optimization, this experiment is perhaps one of the most valuable contribu-

tions, as it compares using signomial programming with using existing general NLP

techniques for solving an aircraft design problem. The results demonstrate that, even

though signomial programming cannot guarantee a global optimum, it is able to find

a better solution in considerably less time than both an interior point solver and a

SQP solver.
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Table 9.3: Landing gear model results for fmincon using different inputs

Method Initial Objective Constraint Time Cost
guess gradients gradients (s)

SP - - - 1.2 1.463E4
IP A N N 189.5 -1.5333e+05 2

IP A Y N 176.3 -1.1736e+05 2

IP A N Y > 8 hours N/A
IP A Y Y > 8 hours N/A
IP B N N 127.1 15472
IP B Y N 39.9 15472
IP B N Y 12.8 15915 2

IP B Y Y 9.3 15454
IP C N N 599.8 15472
IP C N Y 75.5 6302 2

IP C Y N > 8 hours N/A
IP C Y Y 550.7 15511
IP D N N 17.7 16185
IP D N Y 7.5 16101 2

IP D Y N 20.3 15448
IP D Y Y 31.5 16781
SQP A N N 0.5 -2438.4 2

SQP A Y N 0.8 -3586.8 2

SQP A N Y 0.6 -94759 2

SQP A Y Y 1.3 -2.2044e+05 2

SQP B N N 0.3 2778.2 2

SQP B Y N 0.3 33879 2

SQP B N Y 1.2 15709 2

SQP B Y Y 43.6 15724 2

SQP C N N 0.3 -9.323e+05 2

SQP C Y N 0.3 -5.241e+06 2

SQP C N Y 0.1 9762.8 2

SQP C Y Y 0.1 9762.8 2

SQP D N N 1.3 19930
SQP D Y N 0.3 19603 2

SQP D N Y 1.9 10344 2

SQP D Y Y 89.7 10303 2

As the results from this chapter demonstrate, taking the time to formulate a problem

as a geometric or signomial program has great benefits. These include being able

to (i) effectively solve large optimization problems without needing to provide any

2Infeasible solution

100



information beyond the constraints that govern the problem, and (ii) reliably solve

problems quickly using a standard desktop computer or laptop.

One thing not taken into consideration is the cost of (i.e. time spent) formulating a

problem as a GP or SP in the comparisons performed in this chapter. In previous

chapters, however, we have attempted to demonstrate that many aircraft design re-

lationships are expressed naturally in a form compatible with SP, thus making this

cost relatively low.

Combining these findings, there is a strong argument for formulating and solving

aircraft design problems as geometric and signomial programs wherever possible, due

to the speed and robustness advantages they hold over general NLP methods.

101



102



Chapter 10

Comparing Geometric and Signomial

Programming

In the previous chapter, SP was compared with more general, but somewhat un-

reliable, nonlinear programming techniques. We now turn to the other side of the

spectrum and compare SP with the less general, but very reliable, technique of GP.

A key claim of this thesis is that the ability to capture certain relationships using

SP enables a marked improvement in modelling fidelity over GP. The price paid for

this improvement is a loss in the guarantee of global optimality and an increase in

computational cost. To justify using signomial programming instead of geometric

programming, we must demonstrate that the improvement in fidelity is substantial

enough to warrant this cost.

To achieve this, we return to some of the models presented in previous chapters and

investigate what changes need to be made for them to be GP-compatible, what this

means from a modelling fidelity standpoint, and how it affects the solution time and

optimal solution.

In discussions of SP solution techniques, the GP approximation of a given SP refers

specifically to the GP sub-problem that is solved to find the SP solution, and is found

by taking the local monomial approximation of a posynomial term in each signomial

constraint. For the purpose of this discussion, however, the GP approximation refers

more generally to a program where each signomial constraint is replaced by a posyno-
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mial constraint that models the same relationship, or a similar one, in a lower fidelity

way.

Our primary approach for these GP approximations is to use engineering intuition

to find posynomial constraints that suitably replace signomial constraints. Another

approach is to use the monomial approximation formula, Equation 1.10, to replace sig-

nomial constraints with posynomial constraints, using engineering intuition to choose

a suitable point about which to take this approximation. As will be shown, in some

cases these two approaches are one and the same.

The choice between geometric and signomial programming is ultimately up to the

modeler. There are cases where signomial programming enables capturing a critical

relationship, but there are also cases where the additional fidelity is not substantial

enough to merit sacrificing the guarantees and speed of geometric programming.

In the following examples, we attempt to qualitatively and quantitatively evaluate this

difference in fidelity between a geometric programming and signomial programming

approach.

10.1 Examples

10.1.1 Vertical Tail Model

The vertical tail model proposed in chapter 2 has three signomial inequality con-

straints. The first bounds the tail moment arm by the position of the leading edge,

the leading edge sweep, and the vertical position and magnitude of the mean aerody-

namic chord.

lvt  �xlead + zc̄tan(⇤LE) +
c̄

4

(10.1)

The second constrains the mean aerodynamic chord by the taper ratio and the root

chord.

c̄  2

3

✓
1 + �+ �

2

1 + �

◆
croot (10.2)
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The third constrains the vertical tail area by the span and root and tip chords.

Svt  bvt
croot + ctip

2

(10.3)

All of these constraints reflect exact relationships accurately using signomial inequal-

ities. They can each, however, be replaced by constraints that capture the true

relationships more crudely. A GP-compatible replacement for Equation 10.1 is:

lvt 
p

�xlead�xtrail, (10.4)

where the moment arm is now bounded by the geometric mean of the tail leading

and trailing edge locations.

Similarly the mean aerodynamic chord can be constrained by the geometric mean of

the root and tip chord, thus replacing Equation 10.2 with:

c̄  p
crootctip. (10.5)

Not only is the geometric mean of the root and tip chords a fairly simple, if crude,

approximation of the mean aerodynamic chord, but it also implicitly corresponds to

the best possible monomial approximation about any point where � =

c
tip

c
root

= 1.

We can then use the mean aerodynamic chord approximation for bounding the tail

area too, replacing Equation 10.3 with:

Svt  bvtc̄. (10.6)

Here we have effectively replaced an arithmetic mean with a geometric mean, which

again corresponds to the best possible monomial approximation about any point

where ctip = croot.

Following these constraint substitutions, the vertical tail optimization model is a GP

and can be solved as such. The obvious question is: how do these changes affect the

optimal solution? To find out, we solve the GP using the same objective function
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Figure 10-1: The geometric mean approximation corresponds to a monomial approx-
imation of the SP constraints at � = 1

and fixed variable values as in chapter 2, and the solution is compared with that of

the original SP in Table 10.1.

It should be noted that the substituted relationships - a selection from many pos-

sible options - are not necessarily the best approximations, either from an aircraft

design perspective or from an optimization perspective. They are however, perfectly

reasonable, and perhaps even obvious, alternatives.

Importantly, the second and third approximations are also both strictly conservative

Table 10.1: Solution comparison between the vertical tail SP model and its GP ap-
proximation

SP solution GP solution Relative change

Objective 1808.89 1902.64 5.18%

Design Variables
bvt [m] 7.16 6.67 -6.77%
c̄vt [m] 4.08 4.24 3.84%
lvt [m] 17.88 17.01 -4.91%
Svt [m

2

] 26.30 28.27 7.47%
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replacements. For example, the geometric mean is always less than or equal to the

arithmetic mean, so the constraint on vertical tail area is more restrictive. This is

exactly the same property that allows SPs to be solved without requiring a trust

region. The conservative property does not apply to the first replacement on its

own because xtrail does not appear in the original constraint. A strictly conservative

replacement could be:

lvt  �xlead. (10.7)

That said, in the context of other constraints that relate the mean chord c̄ to �xtrail

and �xlead through the root chord croot (e.g. Equation 10.2), it can be shown that

the first replacement would indeed be a conservative substitution as well.

10.1.2 The Wing Model

The standalone wing model has four signomial constraints: the DATCOM formula

(5.5), a constraint equivalent to (10.3), a constraint for maximum fuel volume (6.4),

and a constraint that relates Oswald efficiency to taper (6.2).

The DATCOM Formula

The DATCOM formula [25] is an analytical relationship for estimating the lift curve

slope of a wing or tail.

CL
↵

=

2⇡A

2 +

r⇣
A

⌘

⌘
2

(1 + tan

2

⇤�M

2

) + 4

As discussed in the previous chapters, it can be used as a signomial inequality con-

straint, although some algebraic manipulation is needed to see this.

C

2

L
↵

⌘

2

�
1 + tan

2

⇤�M

2

�
+

8⇡CL
↵

A
 4⇡

2

Removing the �M

2 term from the left hand side would clearly make this constraint

GP-compatible. Interestingly, this corresponds to a fairly common practice in aero-
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dynamics: assuming that a flow is incompressible and that Mach number effects are

therefore negligible.
C

2

L
↵

⌘

2

�
1 + tan

2

⇤

�
+

8⇡CL
↵

A
 4⇡

2

So, the DATCOM formula is a GP-compatible constraint for incompressible flow

regimes and an SP-compatible constraint for compressible flow regimes.

Making the wing model a GP

To make the wing model a GP, each signomial constraint is replaced with a GP-

compatible constraint. The DATCOM formula is replaced with the incompressible

form described above. The reference area constraint is replaced with (10.6) as de-

scribed in the previous section. The fuel volume and Oswald efficiency constraints

are made GP compatible by setting the taper ratio to a constant value of 0.2 (the

previous optimal value). The results of the original SP are compared with the incom-

pressible SP (only replacing the DATCOM constraint), and the GP. As can be seen

in Table 10.2, changing the DATCOM constraint to be a posynomial constraint has

a much more significant impact than changing the other three constraints.

Table 10.2: Solution comparison between the original wing model SP, the SP with an
incompressible DATCOM constraint, and a GP approximation of the SP

Original SP Incompressible SP GP

Objective 24333.8 27284.8 27927.4
(+12.1%) (+14.8%)

Design Variables
A [�] 9.3 7.3 7.3
bw [m] 36.3 37.4 37.3
Sw [m

2

] 141.2 191.9 191.8
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Chapter 11

Conclusion

In this work, signomial programming has been used to tackle aircraft design prob-

lems. More specifically, signomial programming models have been created to find

the optimal preliminary sizing of a commercial tube-and-wing aircraft’s wing, verti-

cal tail, horizontal tail, fuselage, and landing gear. The subsystem models have also

been combined into a single monolithic signomial program that captures the coupled

nature of aircraft design.

In doing this work, signomial programming has been demonstrated as a viable ap-

proach to multidisciplinary aircraft design optimization, with a wide range of con-

straints fitting naturally into the required formulation. Though not as rigorous as for

geometric programs, the solution method for signomial programs is disciplined and

effective. A significant improvement in fidelity over previous geometric programming

models has been achieved thanks to the relaxed restrictions on signomial programs.

Lagrange multipliers obtained from the solution procedure mean that, in addition to

finding an optimal design, the models also give local sensitivities to fixed variables,

thus giving insight into the design space.

Comparisons have also been made between signomial programming and general non-

linear programming methods, as well as between signomial programming and geo-

metric programming. The results support the claims that signomial programming

is faster and more reliable than general nonlinear programming methods and can

achieve marked improvements in fidelity over geometric programming.
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Appendix A

The Difference of Convex

Formulation of a Signomial Program

An interesting subtlety of signomial programming is how to actually define a signomial

program. Despite the importance of choosing an effective formulation, there does

not appear to be a consensus in the literature regarding the best definition. The

purpose of this appendix is to explain the formulation used in this work. As discussed

in chapter 1, the ability to write a signomial program as a ‘difference of convex’

optimization problem is key to being able to solve it without needing a trust region,

and this is the underlying motivation for the chosen formulation, (A.1).

minimize
p

0

(u)

q

0

(u)

subject to si(u)  0, i = 1, ..., ns,

pi(u)  1, i = 1, ..., np,

mi(u) = 1, i = 1, ..., nm.

(A.1)

A.1 Constraints

Recall that the standard form of a GP (1.3) has both monomial and posynomial

constraints less than or equal to one. One might therefore assume that the natural
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definition for a signomial constraint is:

s(x)  1. (A.2)

Although this form appears fairly common in the literature [7], it can be shown that

using the form

s(x) < 0 (A.3)

results in a more efficient solution procedure. The distinction may seem trivial, af-

ter all s(x) � 1 is also a signomial, but it has significant implications for the local

GP approximation of the constraint. To better see this, consider the approximation

procedure for a signomial constraint using both formulations.

s(x)  0 s(x)  1

p(x)� q(x)  0 p(x)� q(x)  1

p(x)  q(x) p(x)  1 + q(x)

p(x)  r(x)

p(x)

q̂(x)

 1

p(x)

r̂(x)

 1

where q̂(x) and r̂(x) are the local monomial approximations to q(x) and 1+ q(x), re-

spectively. To see how these approximations compare, consider an example signomial

constraint.

x+ y � z (A.4)

The two possible formulations for this constraint are:

z

(x+ y)MA

 1

z + 1

(1 + x+ y)MA

 1. (A.5)

Using Equation 1.10 to evaluate the monomial approximations, their respective GP
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compatible forms are:

z

(a+ b)

�
x
a

� a

a+b

�
y
b

� b

a+b

 1

z + 1

(1 + a+ b)

�
x
a

� a

1+a+b

�
y
b

� b

1+a+b

 1. (A.6)

We can clearly see that these approximations are only equivalent where x = a and

y = b, i.e. the point about which the approximation is being taken. As can be seen

in Figures A-1 and A-2, besides this point, the s(x)  1 approximation (dotted con-

tours) is always further than the s(x)  0 approximation (dashed contours) from

the original constraint (solid contours). The first approximation is better because

Figure A-1: The s(x)  0 formulation (dashed contours) provides a better approxi-
mation to the original constraint (solid contours) than the s(x)  1 formulation (dotted
contours).

it is a monomial, whereas the second is a posynomial, and the constraint being ap-

proximated is log-concave. In log space, monomials are affine, whereas posynomials

are strictly convex so a monomial is a strictly better approximation to a log-concave

function than a posynomial.
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Figure A-2: The s  0 approximation matches the original constraint exactly for the
1D slice through x = y, whereas the s(x)  1 approximation is only tangent at the
point about which the approximation was taken.

A.2 Objective

Again, given that the objective of a geometric program is a posynomial, it might

seem natural for the objective of a signomial program to be a signomial. This is not

the case because a signomial is not a ‘difference of convex’ function - it is not, in

general, possible to write a signomial as the difference of two log-convex functions.

A posynomial is log-convex so the objective for a signomial can be, and often is,

a posynomial. It is, however, possible to achieve a more general objective function

using a ratio of posynomials, given that

log

✓
p

1

p

2

◆
= log(p

1

)� log(p

2

) (A.7)

which is a difference of convex functions. This has an additional elegant feature

that the objective function and constraint functions can be interchanged, without

transformation, when signomial constraints are written as a ratio of posynomials less

than one.
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Appendix B

Combined Aircraft Model Results

This appendix contains the solution of the combined aircraft model. It consists of

three tables: the first contains the optimal values of the free variables, the second

contains the values used for fixed variables, and the third contains the sensitivities

to the fixed variables. For each table, the variables are grouped by sub-model. The

sensitivity table is additionally ranked by values of the sensitivities.
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Table B.1: Free variable optimal values

Free Variables Value Units

Aircraft

ARw 9.298 [�]

CD 0.02911 [�]

CL 0.5616 [�]

CL
w

0.5616 [�]

CL
aw

5.616 [�]

D 2.909e+04 [N]

Dfuse 1.038e+04 [N]

Dht 1011 [N]

Dvt 944.6 [N]

Dwing 1.675e+04 [N]

Lw 5.612e+05 [N]

Lv
max

6.399e+05 [N]

Sw 98 [m

2
]

VTO 73.38 [

m
s ]

V1 231.7 [

m
s ]

W 5.612e+05 [N]

Wfuel 5.164e+04 [N]

Wfuse 1.616e+05 [N]

Wht 5196 [N]

Wlg 1.212e+04 [N]

Wpay 1.616e+05 [N]

Wvt 1963 [N]

Wwing 1.204e+05 [N]

Wzf 4.729e+05 [N]

c̄w 3.728 [m]

L
D 19.29 [�]

⇠ 0.07295 [�]

bvt 3.707 [m]

cvt 9.146 [m]

hhold 0.7714 [m]

lfuse 52.47 [m]

p�
v

1.6 [�]

wfuse 3.71 [m]

xw 19.6 [m]

xCG
eng

19.6 [m]

xCG
fu

17.67 [m]

xCG
ht

51.32 [m]

xCG
lg

19.3 [m]

xCG
vt

47.9 [m]

xCG
wing

19.6 [m]

xCG 17.6 [m]

xTO 1524 [m]

xup 29.61 [m]

y 0.1318 [�]

zbre 0.1036 [�]

Fuselage, Aircraft

Afloor 0.05549 [m

2
]

Afuse 10.81 [m

2
]

Ahold 1.68 [m

2
]

Askin 0.01087 [m

2
]

Dfriction 9646 [N]

Dupsweep 736.7 [N]

FF 1.057 [�]

Mfloor 4.442e+05 [N ·m]

Pfloor 1.137e+06 [N]

Rfuse 1.855 [m]

Sbulk 21.62 [m

2
]

Sfloor 5.686e+05 [N]

Snose 49.82 [m

2
]

Vbulk 0.02016 [m

3
]

Vcabin 315 [m

3
]
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Vcargo 6.796 [m

3
]

Vcone 0.1657 [m

3
]

Vcyl 0.2653 [m

3
]

Vfloor 0.1734 [m

3
]

Vhold 41.02 [m

3
]

Vlugg 18.24 [m

3
]

Vnose 0.04645 [m

3
]

Wapu 5657 [N]

Wbuoy 1517 [N]

Wcone 7898 [N]

Wfloor 9865 [N]

Winsul 4307 [N]

Wlugg 1.79e+04 [N]

Wpadd 6.465e+04 [N]

Wpass 1.337e+05 [N]

Wseat 2.79e+04 [N]

Wshell 1.582e+04 [N]

Wskin 8791 [N]

Wwindow 1.062e+04 [N]

�cone 0.4 [�]

� 0.07883 [�]

⇢cabin 0.8711 [

kg
m3 ]

�x 3.831e+07 [

N
m2 ]

�✓ 1.034e+08 [

N
m2 ]

⌧cone 1.034e+08 [

N
m2 ]

f 14.14 [�]

hfloor 0.08359 [m]

lcone 22.86 [m]

lfloor 28.12 [m]

lnose 5.2 [m]

lshell 24.41 [m]

npass 167 [�]

nrows 31 [�]

tshell 0.001259 [m]

tskin 0.0009324 [m]

wfloor 3.125 [m]

xV bulk 0.5969 [m

4
]

xV cyl 4.617 [m

4
]

xV nose 0.1208 [m

4
]

xWapu 2.069e+05 [N ·m]

xWcone 3.242e+05 [N ·m]

xWfix 2.802e+04 [N ·m]

xWfloor 1.717e+05 [N ·m]

xWfuse 2.856e+06 [N ·m]

xWinsul 7.496e+04 [N ·m]

xWpadd 1.125e+06 [N ·m]

xWseat 4.856e+05 [N ·m]

xWshell 2.543e+05 [N ·m]

xWskin 1.413e+05 [N ·m]

xWwindow 1.848e+05 [N ·m]

xshell1 5.2 [m]

xshell2 29.61 [m]

HorizontalTail, Aircraft

ARh 7.707 [�]

CD
h

0.006697 [�]

CD0
h

0.005348 [�]

CL
h

0.1785 [�]

CL
ah0

5.348 [�]

CL
ah

2.963 [�]

Kf 0.4434 [�]

Lh 2.695e+04 [N]

Lmax
h

4.702e+05 [N]

Rec
h

1.001e+07 [�]

S.M. 0.05 [�]

Sh 14.81 [m

2
]
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�xlead
h

32.57 [m]

�xtrail
h

34.88 [m]

↵ 0.06026 [�]

c̄ht 1.591 [m]

�h 0.2 [�]

⌧h 0.15 [�]

bht 10.68 [m]

croot
h

2.31 [m]

ctip
h

0.462 [m]

eh 0.9752 [�]

f(�h) 0.0033 [�]

lht 34.73 [m]

pht 1.4 [�]

qht 1.2 [�]

yc̄
ht

3.052 [m]

LandingGear, Aircraft

B 15.75 [m]

Eland 2.657e+05 [J]

Fw
m

4458 [�]

Fw
n

400.9 [�]

Im 5.007e-06 [m

4
]

In 7.204e-07 [m

4
]

Lm 4.489e+05 [N]

Ln 1.122e+05 [N]

Ln
dyn

4.834e+04 [N]

Lw
m

1.122e+05 [N]

Lw
n

5.612e+04 [N]

Ssa 0.2959 [m]

T 5.662 [m]

Wmg 1.1e+04 [N]

Wms 1048 [N]

Wmw 1781 [N]

Wng 1113 [N]

Wns 85.63 [N]

Wnw 410.8 [N]

Wwa,m 200.2 [lbf]

Wwa,n 46.18 [lbf]

�xm 3.149 [m]

�xn 12.6 [m]

tan(�) 0.2679 [�]

tan( ) 1.963 [�]

dnacelle 2.05 [m]

doleo 0.3119 [m]

dt
m

39.72 [in]

dt
n

31.78 [in]

lm 2.375 [m]

ln 1.627 [m]

loleo 0.7399 [m]

rm 0.04181 [m]

rn 0.04592 [m]

tm 0.02181 [m]

tn 0.002368 [m]

wt
m

0.3439 [m]

wt
n

0.2751 [m]

xm 20.75 [m]

xn 5 [m]

ym 2.831 [m]

VerticalTail, Aircraft

Afan 2.405 [m

2
]

Avt 0.7093 [�]

CD
vis

0.004781 [�]

CL
vt

0.3905 [�]

Dwm 3609 [N]

Lmax
vt

1.28e+06 [N]
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Lvt 2.271e+04 [N]

Revt 4.099e+07 [�]

S 38.76 [m

2
]

Svt 19.38 [m

2
]

Wstruct 3927 [N]

�xlead
v

25.73 [m]

�xtrail
v

34.88 [m]

c̄vt 6.519 [m]

�vt 0.3 [�]

⌧vt 0.09958 [�]

b 7.415 [m]

croot
vt

9.146 [m]

ctip
vt

2.744 [m]

lvt 28.2 [m]

pvt 1.6 [�]

qvt 1.3 [�]

zc̄
vt

1.004 [m]

Wing, Aircraft

CD
w

0.01677 [�]

CD
p

w

0.005637 [�]

Lmax
w

3.112e+06 [N]

Rew 2.344e+07 [�]

Vfuel,max 93.38 [m

3
]

↵w 0.1 [�]

¯

Afuel,max 0.069 [�]

� 0.2 [�]

⌧w 0.15 [�]

bw 30.19 [m]

croot 5.411 [m]

ctip 1.082 [m]

e 0.9702 [�]

f(�w) 0.0033 [�]

pw 1.4 [�]

qw 1.2 [�]

yc̄
w

8.624 [m]

WingBox, HorizontalTail, Aircraft

Icap 2.377e-05 [�]

Mr 2.114e+05 [N]

Wcap 3382 [N]

Wweb 329.3 [N]

⌫ 0.8612 [�]

tcap 0.005417 [�]

tweb 0.002345 [�]

WingBox, VerticalTail, Aircraft

A 1.419 [�]

Icap 7.456e-07 [�]

Mr 1.21e+05 [N]

Wcap 2107 [N]

Wweb 697.4 [N]

⌫ 0.8225 [�]

tcap 0.0003581 [�]

tweb 0.0007934 [�]

WingBox, Wing, Aircraft

Icap 3.458e-05 [�]

Mr 1.688e+06 [N]

Wcap 7.984e+04 [N]

Wweb 6158 [N]

⌫ 0.8612 [�]

tcap 0.008251 [�]

tweb 0.002828 [�]
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Table B.2: Fixed variable values

Constants Value Units

Aircraft

CL
max

2.5 [�]

M 0.78 [�]

Nlift 2 [�]

Range 3000 [nmi]

Te 1.29e+05 [N]

Vne 144 [

m
s ]

Weng 1e+04 [N]

µ 1.4e-05 [

N·s
m2 ]

⇢ 0.38 [

kg
m3 ]

⇢0 1.225 [

kg
m3 ]

⇢cap 2700 [

kg
m3 ]

⇢web 2700 [

kg
m3 ]

�max,shear 1.67e+08 [Pa]

�max 2.5e+08 [Pa]

a 297 [

m
s ]

cT 0.3 [

lb
(hr·lbf) ]

dfan 1.75 [m]

fw,add 0.4 [�]

g 9.81 [

m
s2 ]

lr 5000 [ft]

rh 0.75 [�]

w 0.5 [�]

yeng 4.83 [m]

Fuselage, Aircraft

LF 0.898 [�]

Nland 6 [�]

R 287 [

J
(K·kg) ]

SPR 6 [�]

Tcabin 300 [K]

W

00
floor 60 [

N
m2 ]

W

00
insul 22 [

N
m2 ]

W

0
seat 150 [N]

W

0
window 435 [

N
m ]

Wavg.pass 180 [lbf]

Wcargo 1e+04 [N]

Wcarryon 15 [lbf]

Wchecked 40 [lbf]

Wfix 3000 [lbf]

�h 1 [m]

�p 5.2e+04 [Pa]

⇢1 0.38 [

kg
m3 ]

⇢bend 2700 [

kg
m3 ]

⇢cargo 150 [

kg
m3 ]

⇢cone 2700 [

kg
m3 ]

⇢floor 2700 [

kg
m3 ]

⇢lugg 100 [

kg
m3 ]

⇢skin 2700 [

kg
m3 ]

�floor 2.069e+08 [

N
m2 ]

�skin 1.034e+08 [

N
m2 ]

⌧floor 2.069e+08 [

N
m2 ]

fapu 0.035 [�]

ffadd 0.2 [�]

fframe 0.25 [�]

flugg,1 0.4 [�]

flugg,2 0.1 [�]

fpadd 0.4 [�]

fstring 0.35 [�]

nseat 186 [�]

ps 31 [in]

pcabin 7.5e+04 [Pa]

rE 1 [�]
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waisle 0.51 [m]

wseat 0.5 [m]

wsys 0.1 [m]

xapu 120 [ft]

xfix 2.1 [m]

HorizontalTail, Aircraft

CL
hmax

2.5 [�]

Cm
fuse

0.05 [�]

S.M.min 0.05 [�]

�xw 2 [m]

↵max,h 0.1 [�]

⌘h 0.97 [�]

⌘ht 0.9 [�]

tan(⇤ht) 0.5774 [�]

|Cm
ac

| 0.1 [�]

LandingGear, Aircraft

E 205 [GPa]

K 2 [�]

Ns 2 [�]

⌘s 0.8 [�]

�LG 2.5 [�]

⇢st 7850 [

kg
m3 ]

�y
c

4.7e+08 [Pa]

tan(�) 0.08749 [�]

tan(�min) 0.2679 [�]

tan( max) 1.963 [�]

tan(✓max) 0.2679 [�]

fadd,m 1.5 [�]

fadd,n 1.5 [�]

hnacelle 0.5 [m]

nmg 2 [�]

nwps 2 [�]

poleo 1800 [

lbf
in2 ]

tnacelle 0.15 [m]

wult 10 [

ft
s ]

zCG 2 [m]

zwing 0.5 [m]

VerticalTail, Aircraft

CD
wm

0.5 [�]

CL
vmax

2.6 [�]

V1 70 [

m
s ]

⇢c 0.38 [

kg
m3 ]

⇢TO 1.225 [

kg
m3 ]

tan(⇤vt) 0.8391 [�]

cl
vt

0.5 [�]

ev 0.8 [�]

Wing, Aircraft

CL
wmax

2.5 [�]

↵max,w 0.1 [�]

cos(⇤) 0.866 [�]

⌘w 0.97 [�]

⇢fuel 817 [

kg
m3 ]

tan(⇤) 0.5774 [�]
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Table B.3: Fixed variable sensitivities

Sensitivities Value Units

Wing, Aircraft

CL
wmax

0.3192 [�]

tan(⇤) 0.06735 [�]

⌘w -0.1465 [�]

↵max,w -0.2513 [�]

VerticalTail, Aircraft

⇢c 0.03472 [

kg
m3 ]

CL
vmax

0.0266 [�]

ev -0.01605 [�]

⇢TO -0.04466 [

kg
m3 ]

cl
vt

-0.05721 [�]

V1 -0.1425 [

m
s ]

LandingGear, Aircraft

fadd,m 0.01242 [�]

tan(✓max) 0.01065 [�]

nmg -0.02991 [�]

nwps -0.0339 [�]

HorizontalTail, Aircraft

�xw 0.05261 [m]

CL
hmax

0.01468 [�]

tan(⇤ht) 0.01088 [�]

⌘h -0.02993 [�]

⌘ht -0.04177 [�]

Fuselage, Aircraft

nseat 0.7349 [�]

LF 0.5094 [�]

Wavg.pass 0.4494 [lbf]

wseat 0.3223 [m]

⇢1 0.3064 [

kg
m3 ]

SPR 0.1623 [�]

ps 0.16 [in]

fpadd 0.1481 [�]

�h 0.1033 [m]

W

0
seat 0.06547 [N]

Wchecked 0.05992 [lbf]

waisle 0.0548 [m]

flugg,1 0.03995 [�]

⇢skin 0.03587 [

kg
m3 ]

�p 0.03587 [Pa]

Wcargo 0.03361 [N]

Wfix 0.02683 [lbf]

W

0
window 0.02433 [

N
m ]

⇢cone 0.02152 [

kg
m3 ]

wsys 0.02149 [m]

flugg,2 0.01997 [�]

fapu 0.01495 [�]

W

00
floor 0.01208 [

N
m2 ]

fstring 0.01116 [�]

Nland 0.01052 [�]

⇢floor 0.01052 [

kg
m3 ]

�skin -0.05739 [

N
m2 ]

Aircraft

g 1.435 [

m
s2 ]

cT 1.062 [

lb
(hr·lbf) ]

Range 1.062 [nmi]

Vne 0.721 [

m
s ]

Nlift 0.339 [�]

⇢0 0.3339 [

kg
m3 ]
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⇢cap 0.2748 [

kg
m3 ]

fw,add 0.0849 [�]

yeng 0.07245 [m]

Te 0.07126 [N]

µ 0.04465 [

N·s
m2 ]

Weng 0.02314 [N]

rh 0.02241 [�]

⇢web 0.02241 [

kg
m3 ]

�max,shear -0.02241 [Pa]

w -0.04182 [�]

�max -0.3166 [Pa]

⇢ -0.4166 [

kg
m3 ]

a -1.164 [

m
s ]

M -1.312 [�]
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