
The Power of Log Transformation: A Comparison of Geometric
and Signomial Programming with General Nonlinear

Programming Techniques for Aircraft Design Optimization

Philippe G. Kirschen* and Warren W. Hoburg †

Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA

Geometric and signomial programming are emerging as promising methods for aircraft design op-
timization, having both been demonstrated to reliably and quickly find optimal solutions to aircraft
design problems. To better understand how they perform compared with more conventional alter-
natives, this work presents a direct comparison with a general nonlinear programming approach.
The crux of geometric programming, and by extension signomial programming, is in the formulation
and the logarithmic transformation that makes the problem convex. Starting with the same problem
formulation we assess the difference in speed and effectiveness achieved by performing the transfor-
mation. Two relatively small aircraft design problems, one a geometric program, the other a signo-
mial program, are solved using the interior point and sequential quadratic programming alogrithms
implemented in MATLAB’s fmincon function, both with and without performing the log transforma-
tion first. Results show that performing the log transformation consistently yields the same optimal
solution, independent of initial guess, whereas applying a general nonlinear programming technique
directly to the un-transformed problem, at best, takes significantly longer and, at worst, terminates
at an infeasible solution. The results also show that the general approach is highly sensitive to the
initial guess whereas geometric and signomial programming approaches are not.

Nomenclature

ACD0
fuselage drag area

CD drag coefficient
CLmax maximum lift coefficient
CL lift coefficient
CWw,1 wing weight coefficent 1
CWw,2 wing weight coefficent 2
C f skin friction coefficient
D total drag force
L/D lift-to-drag ratio
Nult ultimate load factor
R aircraft range
Re Reynold’s number
S total wing area

S wet/S wing wetted area ratio
V cruise velocity
V f fuel volume, total
V favail available fuel volume
V f f use available fuselage volume
V fwing available wing volume
Vmin takeoff velocity
W total aircraft weight
W0 aircraft weight excluding

wing
W f fuel weight
Ww wing weight, total
Wwstrc wing weight, structure

Wwsur f wing weight, surface
A aspect ratio
µ viscosity of air
ρ density of air
ρ f density of fuel
τ airfoil thickness-to-chord

ratio
cT thrust specific fuel

consumption
e Oswald efficiency factor
g gravitational acceleration
k form factor
t flight time

I. Introduction
Previous work has demonstrated that simple aircraft design problems can be solved quickly, effectively and easily
using Geometric Programming (GP)a [1], and that conceptual aircraft design problems comprising a more general set
of mathematical relationships can be solved quickly, effectively and easily using Signomial Programming (SP) [2].
These claims of speed, effectiveness and ease have limited value, however, without the benchmark of an alternative
technique. An important conclusion from both of these works is that aircraft conceptual design models fit naturally
into the geometric and signomial programming frameworks, with little to no sacrifice in fidelity. The purpose of this
work is to compare GP and SP with general Nonlinear Programming (NLP) techniques, in the context of aircraft
design optimization. Using two different aircraft design problems as test cases, comparisons are made based on two
metrics: computational cost, as measured by the number of solver iterations, and solution quality, as measured by the
final objective value. Before this, we begin with brief introductions to geometric and signomial programming.
*Graduate Student, Department of Aeronautics and Astronautics; currently Optimization Engineer, Hyperloop One.
†Assistant Professor, Department of Aeronautics and Astronautics; currently Astronaut Candidate, NASA.
aThe “GP” acronym is overloaded, referring both to geometric programs and geometric programming. The same is true of the “SP” acronym.



A. Geometric Programming

A Geometric Program (GP) is a special form of nonlinear optimization problem that can be transformed into a convex
optimization problem through a logarithmic change of variables. To have this property, GPs are limited to using two
special classes of function.

A monomial is a function of the form

m(x) = c
n∏︁

j=1

xa j

j , (1)

where a j ∈ R, c ∈ R++, and x j ∈ R++. For instance, the familiar expression for lift, 1
2ρV2CLS , is a monomial with

x = (ρ,V,CL, S ), c = 1/2, and a = (1, 2, 1, 1).
A posynomial is a function of the form

p(x) =
K∑︁

k=1

ck

n∏︁
j=1

xa jk

j , (2)

where ak ∈ Rn, ck ∈ R++, and x j ∈ R++. Thus, a posynomial is simply a sum of monomial terms, and all monomials
are also posynomials (with just one term).

In plain English, a GP minimizes a posynomial objective function, subject to monomial equality constraints and
posynomial inequality constraints. The standard form of a geometric program in mathematical notation is as follows:

minimize p0(x)
subject to pi(x) ≤ 1, i = 1, ..., np, (3)

mi(x) = 1, i = 1, ..., nm,

where the pi are posynomial (or monomial) functions, the mi are monomial functions, and x ∈ Rn
++ are the decision

variables.
Whereas a geometric program is just a type of optimization problem with a certain mathematical structure, for the

purpose of this work, geometric programming specifically refers to solving a geometric program by transforming it
into logarithmic space through a change of variables:

y = log x (4)

and then applying a reliable gradient-based optimization technique to the resulting (convex) problem:

minimize log p0(ey)
subject to log pi(ey) ≤ 0, i = 1, ..., np, (5)

log mi(ey) = 0, i = 1, ..., nm.

Given that an un-transformed GP is a non-convex optimization problem, even applying the same gradient-based
optimization technique to an un-transformed GP falls into the significantly more general classification of NLP, without
any of the guarantees associated with geometric programming.

B. Signomial Programming

A Signomial Program (SP) is a closely related generalization of a GP that allows signomial constraints. A signomial
is a function with the same form as a posynomial,

s(x) =
K∑︁

k=1

ck

n∏︁
j=1

xa jk

j , (6)

except that the coefficients, ck ∈ R, can now be any real number. In particular, they can be negative. The ‘difference of
convex’ formulation of a signomial program permits the objective function to be a ratio of posynomials and is given
by:

minimize
p0(x)
q0(x)

subject to si(x) ≤ 0, i = 1, ..., ns,

pi(x) ≤ 1, i = 1, ..., np,

mi(x) = 1, i = 1, ..., nm.

(7)



Although (7) is standard form for a signomial program, signomial constraints often take the form p1(x) ≤ p2(x)
or s(x) ≤ p(x), because these are often more intuitive, and both can easily be transformed into the standard form
s(x) ≤ 0. This follows the geometric programming convention of using posynomial inequality constraints of the form
p(x) ≤ m(x) and monomial equality constraints of the form m1(x) = m2(x) [3].

The definition of signomial programming is slightly more nuanced than that for geometric programming, because
whereas a geometric program is convex in log space, a signomial program is not. Solving a signomial program with
a log transformation is, in principle, no more efficient than solving it without a log transformation, because neither
option is convex. Signomial programming refers to the process of solving a signomial program by solving a sequence
of GP approximations, each solved via the logarithmic transformation. Note that when a general NLP solver is applied
directly to a signomial program, it may also use a sequence of convex approximations to find a solution. The key
distinction with signomial programming is that the convex approximations are always geometric programs.

The majority of SP heuristics involve finding a local GP approximation to the SP about an initial guess, x0, solving
this GP, and then repeating the process, using the previous iteration’s optimal solution as the point about which to
take the next GP approximation. The process is repeated until the solution converges [3]. The GP approximation is
obtained by approximating each signomial constraint with a posynomial constraint.

The first step, if it has not already been done, is to express each signomial, si(x), as a difference of posynomials,
pi(x) and qi(x), and rearrange them to the form of a posynomial less than or equal to another posynomial.

si(x) ≤ 0 (8)
pi(x) − qi(x) ≤ 0 (9)

pi(x) ≤ qi(x) (10)

Although (10) is not a GP-compatible constraint, it can be made into a GP constraint if posynomial qi(x) is replaced
with its local monomial approximation, q̂i(x; x0), because a posynomial divided by a monomial is also a posynomial.

pi(x) ≤ q̂i(x; x0) (11)
pi(x)

q̂i(x; x0)
≤ 1 (12)

Finding a monomial approximation to a posynomial is equivalent to finding a local affine approximation to a non-
linear function in log space. The best-possible local monomial approximation to a posynomial q(x) at the point x0 is
given by [3]:

q̂i(x)
⃒⃒⃒
x0 = qi(x0)

N∏︁
n=1

(︃
xn

x0
n

)︃an

(13)

where xn are the elements of x and:

an =
x0

n

qi(x0)
∂qi

∂xn
. (14)

C. Choice of Solvers

The MATLAB® function fmincon is used for this analysis because it is a popular, commercially available general-
purpose optimization tool for finding the minima of constrained nonlinear problems and comprises a number of dif-
ferent types of solver, including both an Interior Point (IP) method solver and a Sequential Quadratic Programming
(SQP) solver [4]. Most importantly, it can be used to solve both the transformed and un-transformed versions of the
optimization problems solved in this work.

Interior point methods are a powerful class of algorithm that are the method of choice for solving log-transformed
GPs, and therefore, by extension, SPs [3]. Though originally derived for solving linear programs, and most frequently
used for convex optimization problems, interior point algorithms have also been developed and successfully applied
to solving nonlinear, non-convex problems [5]. The fmincon implementation of an interior point method is based
on work presented in [6], [7] and [8], and is designed to be robust to non-convexity.

SQP is one of the most effective methods for general nonlinearly constrained optimization [9] and is widely used
in many fields, including aircraft design [10]. The fmincon implementation of the SQP algorithm is largely based
on the algorithm described in [9].



The fmincon function has a number of options designed to improve its performance. For example, it is possible to
provide analytical gradients of the objective and constraints as inputs. When provided to fmincon in the experiments
presented below, the analytical gradients are computed as follows. Recalling that monomials and posynomials are
specific classes of signomial, the gradient of a signomial:

s(u) =
K∑︁

k=1

ck

n∏︁
j=1

ua jk

j (15)

is computed as:
∂s(u)
∂ui

=

K∑︁
k=1

ckaikuaik−1
i

n∏︁
j=1, j ̸=i

ua jk

j (16)

and checked using the CheckGradients feature in fmincon.
The fmincon function requires an initial guess for each design variable, regardless of which solution algorithm

is used. Note that many interior point methods used to solve geometric and signomial programs do not require the user
to provide an initial guess, although signomial programming heuristics typically require an initial guess for variables
that appear in signomial constraints [3]. Initial guesses used in this paper are based on solutions found a priori using
GPkit [11] with MOSEK [12] (academic license) as the backend solver.

In the next section, two test cases are solved: a relatively small GP model for UAV design introduced in [1], and a
slightly larger SP extension of the same model introduced in [13]. To obtain a meaningful comparison, both test cases
are solved using a range of different initial guesses, as well as both with and without analytical gradients. All tests are
performed on a laptop computer with a 2.4 GHz Intel Core i5 processor, using MATLAB 9.3.0.

II. Test Cases
A. Geometric Program

The first test case is the simple UAV design problem from [1]. This problem is a GP with 10 free variables and 8
constraints.

minimize D (17)

subject to D =
1
2
ρV2S CD (18)

CD ≥
ACD0

S
+ kC f

S wet

S
+

C2
L

πAe
(19)

C f ≥ 0.074Re−0.02 (20)

Re ≤
ρV
√

S/A
µ

(21)

W ≤
1
2
ρV2S CL (22)

W ≥ W0 +Ww (23)

Ww ≥ CWw,1 S +CWw,2

NultA
1.5√W0WS
τ

(24)

W ≤
1
2
ρV2

minS CLmax (25)

In geometric (and by extension, signomial) programming there is an implicit constraint x > 0. To prevent the
solver finding non-physical solutions in the un-transformed case, this constraint is explicitly included, adding a further
10 (very simple) constraints to the problem.

The problem is solved using both the IP and SQP algorithms, with and without the log transformation, using
different initial guesses. The un-transformed problem is solved without providing analytical gradients to the solver.

The exact initial guesses used are listed in Table 1. Option A is an arbitrary initial guess of one for every variable.
Without any understanding of a problem, let alone prior knowledge of the solution, this might represent the best initial
guess a user can provide. It is also an appealing initial guess because it requires effectively no effort from the user.

Initial guess B is, at the opposite extreme, the globally optimal solution rounded to one significant figure, where
the optimal solution is taken from the known GP solution. This is, of course, an unrealistic initial guess – a user does



Table 1: Initial guesses used for simple UAV design case

Variable Optimal value A B C D E
from GP Ones Almost exact Order of Order of Order of
solution solution magnitude magnitude magnitude

(floor) (round) (mix)

A 8.46 1 8 1 10 10
CD 0.02059 1 0.02 0.01 0.01 0.1
C f 0.003599 1 0.004 0.001 0.01 0.01
CL 0.4988 1 0.5 0.1 1 1
D 303.1 1 300 100 100 100
Re 3.675 × 106 1 4 × 106 1 × 106 1 × 107 1 × 106

S 16.44 1 20 10 10 10
V 38.15 1 40 10 100 10
W 7341 1 7000 1000 10,000 10,000
Ww 2401 1 2000 1000 1000 1000

not typically know the globally optimal solution before solving – but it tests the optimizer on what should be an easy
problem.

Initial guesses C, D and E are based on the order of magnitude of the optimal solution. These are intended to be
intermediate guesses between options A and B, and represent initial guesses that a user might be able to provide in a
practical context.

Two different interpretations of the order of magnitude are used: the “floor” and “round” estimates. Using mathe-
matical notation for the floor and round operators, initial guesses C and D are given by

x0
C = 10⌊log10(x*)⌋ (26)

and
x0

D = 10[log10(x*)], (27)

respectively, where x* is the optimal value, as obtained from the GP solution.
Initial guess E is a combination of initial guesses C and D, with one perturbed value (CD). These three fairly

similar variants are intended to test how sensitive the solution is to slight changes in the assumed order of magnitude
of the final solution.

The results of the comparison tests are listed in Table 2. A few observations can be made from the results:

1. As expected, solving with the log transformation consistently yields the (provably global) optimum in a fraction
of a second, independent of solver algorithm and initial guess.

2. By contrast, the speed and effectiveness of solving without the log transformation are highly dependent on solver
algorithm and initial guess.

3. Applying the IP solver to the un-transformed problem yields a close-to-globally-optimal solution for three of
the five initial guesses, although it takes between 10 and 600 times as many iterations compared with solving
the transformed problem. Interestingly, the IP solver performs better with the most naive initial guess than with
all of the order-of-magnitude guesses.

4. The SQP solver also, surprisingly, performs best on the un-transformed problem with the most naive initial
guess, finding the optimal solution in the same time and with only five times as many iterations as needed for
the transformed problem. The SQP solver finds notably sub-optimal (10%) local optima for all three order-of-
magnitude initial guesses.

5. There are significant differences in performance between the three order-of-magnitude initial guesses for both
solver algorithms. For example, the IP solver returns an optimal solution for initial guess D, an infeasible solu-
tion for initial guess C, and a supposedly-feasible solution that actually exploits constraint violation tolerances
for initial guess E.



6. Providing analytical gradients to the solvers yields mixed results. In most cases, it has no impact on the final
solution and limited effect on the iteration count. Interestingly, it results in a significantly worse local optimum
for the IP solver with initial guess D, but simultaneously enables the solver to find an optimal solution for
initial guess E, which it does not find with finite difference gradients. For the SQP solver, analytical gradients
substantially reduce the number of iterations for initial guess D, whereas, they actually increase the number of
iterations for initial guess A.

Table 2: Comparison of objective value, f (x), solution time, t, and iteration count, n, for three different formulations of
the simple UAV design problem: (1) the original formulation as shown above, (2) the original formulation with analytical
objective and constraint gradients provided to the solver, and (3) the formulation resulting from a logarithmic change of
variables. Costs marked with (i) indicate that the solver returned an infeasible solution. Costs marked with (e) indicate that
the solver exceeded 300,000 iterations without reaching an optimum.

Without log transformation With log transformation

No analytical gradients Analytical gradients No analytical gradients

Solver Initial f (x) t n f (x) t n f (x) t n
type guess [N] [s] [-] [N] [s] [-] [N] [s] [-]

IP A 303.14 9.8 2725 1.2802e-06(e) 1436.8 300000 303.07 0.2 28
IP B 303.14 0.2 105 303.14 0.2 90 303.07 0.2 14
IP C 0.0001601(i) 852.2 227857 0.00016007(e) 1225.3 300000 303.07 0.2 19
IP D 303.14 53.2 11562 593.76 37.7 10530 303.07 0.1 20
IP E 9.9955e-07 70.0 24621 303.14 17.4 5039 303.07 0.1 19
SQP A 303.14 0.1 94 303.14 0.1 274 303.07 0.1 20
SQP B 304.95 0.0 23 304.95 0.0 23 303.07 0.1 9
SQP C 337.79 0.2 83 337.79 0.0 83 303.07 0.1 12
SQP D 438.66 1.2 653 438.66 0.1 83 303.07 0.1 11
SQP E 337.85 0.1 72 337.85 0.0 72 303.07 0.1 12

The different optimal solutions are shown in Table 3. Solutions (I) and (II) are virtually identical. Though not
hugely different, solution (III) represents an aircraft that flies slightly slower with a larger wing and a higher lift
coefficient. Solution (IV), however, represents a distinctly different aircraft that travels significantly faster with a wing
that is simultaneously larger and lighter, due its much smaller aspect ratio. This design results in an aircraft that has
almost 50% higher drag than the true optimal design. Solution (V) is an even worse local optimum, with an even larger
wing and higher cruise velocity, resulting in a drag that is almost 100% higher than the true optimal design.

Table 3: A more detailed look at the feasible solution values for the GP test case

Variable Units Solution corresponding to objective value of...

303.07 303.14 337.79 438.66 593.76
(I) (II) (III) (IV) (V)

A [−] 8.46 8.452 8.731 2.506 3.496
CD [−] 0.02059 0.02059 0.02668 0.01359 0.01318
C f [−] 0.003599 0.003598 0.004669 0.002946 0.002947
CL [−] 0.4988 0.4985 0.5896 0.1883 0.2194
D [N] 303.1 303.1 337.8 438.7 593.8
Re [−] 3.675 × 106 3.678 × 106 1.000 × 106 1.000 × 107 1.000 × 107

S [m2] 16.44 16.46 16.74 19.33 23.54
V [m/s] 38.15 38.14 35.07 52.10 55.78
W [N] 7341 7341 7466 6077 9880
Ww [N] 2401 2401 2526 1137 1684

The key take-away from this example is that, even for a relatively small GP, when the problem is not transformed
into log space, both solvers are sensitive to the choice of initial guess and can get stuck in local optima that are



substantially worse than the true optimum. Furthermore, even when the solvers are able to find the correct optimum,
on average it takes substantially more time and iterations than with the transformed problem.

B. Signomial Program

The second test case is an extension of the first, with the addition of 10 more constraints, including a signomial
constraint. It is important to note that adding just one signomial constraint to a geometric program makes it a signomial
program, and thus the guarantee of finding a global optimum, if one exists, is lost.

The new constraints capture fuel weight and volume relationships. The fuel can be carried in both the wing and
the fuselage and this is captured in the signomial constraint (44). For this example, the objective is to minimize fuel
weight. The full signomial program has 20 free variables and 38 constraints, 20 of which are of the form x j > 0.

minimize W f (28)
subject to W f ≥ cT tD (29)

t ≥
R
V

(30)

D ≥
1
2
ρV2S CD (31)

CD ≥
ACD0

S
+ kC f

S wet

S
+

C2
L

πAe
(32)

C f ≥ 0.074Re−0.02 (33)

Re ≤
ρV
√

S/A
µ

(34)

1
2
ρV2S CL ≥ W0 +Ww +

1
2

W f (35)

1
2
ρV2

minS CLmax ≥ W (36)

W ≥ W0 +Ww +W f (37)
Ww ≥ Wwsur f +Wwstrc (38)

Wwsur f ≥ CWw,1 S (39)

Wwstrc ≥ CWw,2

NultA
3
2
√︀

(W0 + V f f use gρ f )WS

τ
(40)(︂ L

D

)︂
=

CL

CD
(41)

V f ≤ V favail (42)

V f =
W f

gρ f
(43)

V favail ≤ V fwing + V f f use (44)

V2
fwing
≤ 0.0009

S 3

A
τ2 (45)

V f f use ≤ ACD0
10[m] (46)

This model is first solved by direct application of the IP and SQP solvers, both with and without analytical gra-
dients, and then solved using the signomial programming approach described in section I, again with both the IP and
SQP solvers. The results are presented in Table 4.

Both the IP and SQP solvers are used with the first four types of initial guess from the previous example, this time
based on a previously found optimal solution of the SP . It should be noted that this SP solution was found using an
initial guess of one for every variable that appears in a signomial constraint, in this case, V f f use and V fwing . This choice
impacts all of the results obtained in this section.

For a signomial program, the initial guess not only determines the starting point for the solvers, but also, in the
case of the log transformation approach, the point about which the first GP approximation is made. Subsequent GP
approximations are taken about the optimal solution from the previous iteration, until convergence is achieved.



Table 4: Comparison of objective value, f (x), solution time, t, and iteration count, n, for three different formulations of the SP
test case: (1) the original formulation, (2) the original formulation with analytical objective and constraint gradients provided
to the solver, and (3) the formulation resulting from a logarithmic change of variables. Costs marked with (i) indicate that the
solver returned an infeasible solution.

Without log transformation With log transformation

No analytical gradients Analytical gradients No analytical gradients

Solver Initial f (x) t n f (x) t n f (x) t n
type guess [N] [s] [-] [N] [s] [-] [N] [s] [-]

IP A 0.00029284(i) 316.6 73654 9.5991e-05(e) 1232.5 300000 4536.2 0.4 103
IP B 4543.6 10.0 1939 4543.6 5.8 1694 4536.2 0.3 61
IP C 4543.6 9.7 2006 4543.6 28.4 5025 4536.2 0.4 97
IP D 4543.6 300.5 55821 11062 429.5 115141 4536.2 0.3 68
SQP A 21.3(i) 0.1 13 -2.5512e-05(i) 0.1 32 4536.2 0.0 51
SQP B 4547.9 0.1 34 4547.9 0.1 48 4536.2 0.0 25
SQP C 3.4751e+06 3.5 772 1.0339e+06 1.0 486 4536.2 0.1 43
SQP D 5132.1 0.4 136 5619.9(i) 0.0 2 4536.2 0.1 30

For this signomial program the solution took either 3 or 4 GP iterations to converge, depending on the initial guess.
The time and iteration counts in the log transformation column of Table 4 are summations of the time and number of
solver iterations required for each GP. The breakdowns of these iterations for the IP and SQP solutions are presented
in Table 5 and Table 6, respectively.

Table 5: Convergence of the objective value
with the solver time and iteration count per GP
iteration for the IP solver

Initial GP f (x) t n
Guess Iteration [N] [s] [-]

A 1 5717.1 0.1 40
2 4538.3 0.1 23
3 4536.2 0.1 20
4 4536.2 0.1 20

B 1 4538.2 0.1 22
2 4536.2 0.1 19
3 4536.2 0.1 20

C 1 5717.1 0.1 34
2 4538.3 0.1 23
3 4536.2 0.1 20
4 4536.2 0.1 20

D 1 4594.2 0.1 28
2 4536.5 0.1 20
3 4536.2 0.1 20

Table 6: Convergence of the objective value
with the solver time and iteration count per GP
iteration for the SQP solver

Initial GP f (x) t n
Guess Iteration [N] [s] [-]

A 1 5717.1 0.0 25
2 4538.3 0.0 12
3 4536.2 0.0 8
4 4536.2 0.0 6

B 1 4538.2 0.0 11
2 4536.2 0.0 8
3 4536.2 0.0 6

C 1 5717.1 0.0 17
2 4538.3 0.1 12
3 4536.2 0.0 8
4 4536.2 0.0 6

D 1 4594.2 0.0 12
2 4536.5 0.1 10
3 4536.2 0.0 8

A few observations can be made from the results in Table 4:

1. All of the solutions obtained using the SP (log transformation) approach are identical, with only slight variations
in the number of iterations taken to arrive there. The SQP algorithm takes fewer iterations than the IP algorithm.

2. For the un-transformed formulation with the IP solver, all initial guesses, except for the most naive guess, yield
an optimal solution that is close to the solution obtained from the SP approach. However, these solutions take
between 20 and 820 times as many iterations as the SP approach, depending on the choice of initial guess.



3. When applying the SQP solver directly to the un-transformed problem, only the initial guess closest to the SP
optimum results in a final solution that is close to the SP optimum. Initial guess D (order-of-magnitude, round)
finds a local optimum that is notably worse (13%) than the SP optimum. Initial guess A (ones) results in an
infeasible solution, whereas initial guess C (order-of-magnitude, floor) finds a local optimum that is very far
from a global optimum.

4. Once again, providing analytical gradients to the solver yields mixed results. The number of iterations needed
to find an optimum is only reduced in one case and there are several cases where analytical gradients either
increase the number of iterations or lead to an infeasible solution where the finite difference gradients find a
feasible optimum. For the IP solver with initial guess D, using analytical gradients results in a new, significantly
worse local optimum.

Table 7: A more detailed look at the feasible solution values for the SP test case

Variable Units Solution corresponding to objective value of...

4536.2 4543.6 5132.1 11062
(I) (II) (III) (IV)

A [−] 11.96 11.96 4.716 3.938
ACD0

[m2] 0.04613 0.04630 0.04813 2.599 × 10−9

CD [−] 0.01335 0.01337 0.01161 0.009552
C f [−] 0.00342 0.003418 0.002946 0.002948
CL [−] 0.3179 0.3181 0.1718 0.1648
D [N] 463.4 464.0 701.2 999.6

(L/D) [−] 23.81 23.79 14.79 17.26
Re [−] 4.760 × 106 4.759 × 106 1.000 × 107 9.96 × 106

S [m2] 21.63 21.64 21.04 83.36
t [hr] 16.31 16.32 12.20 18.44
V [m/s] 51.08 51.06 68.32 45.18
V f [m3] 0.5660 0.5680 0.6415 1.383

V favail [m3] 0.5660 0.5680 0.6415 1.383
V f f use [m3] 0.4613 0.4630 0.4813 1.761 × 10−8

V fwing [m3] 0.1047 0.1050 0.1602 1.383
W [N] 13300 13310 12940 22780
W f [N] 4536 4544 5132 11062
Ww [N] 2515 2517 1558 5470

Wwstrc [N] 1217 1218 295.3 468.2
Wwsur f [N] 1298 1299 1262 5002

The four interesting feasible solutions are shown in Table 7. Solution (I), found using the log transformation (sig-
nomial programming) approach, regardless of initial guess and solver choice, has reasonable values for each physical
quantity in the solution, given the parameters of the problem.

Solution (II), found by direct application of the interior point method to the un-transformed problem for certain
initial guesses, is very similar to solution (I), with the exception of a slightly larger fuselage resulting in a slightly
higher drag.

Solution (III) is another local optimum. As with the distinct local optima found in the first example, the aircraft
designed in this case has a significantly lower (but not unrealistic) aspect ratio, a lower flight time and higher cruise
velocity, and a lower lift-to-drag ratio.

Solution (IV) is an even worse local optimum. Although it also has a larger wing and lower aspect ratio, unlike
other local optima this design suggests a slower velocity. The most unique aspect of this design is that has virtually
no fuselage volume, choosing instead to put all of the fuel in the wings. The result is a design that consumes almost
250% more fuel.

Figure 1 shows the location of the first three solutions in the wing volume - fuselage volume design space. When
these two variables are fixed, the problem becomes a geometric program. As can be seen, the two best optimal
solutions appear to lie on a border to the left of which there is a region where there is no benefit to be gained from
further decreasing the wing volume.



Figure 1: The three best solutions plotted in the wing volume vs. fuselage volume design space.

III. Conclusion
The results from this work demonstrate that using a logarithmic change of variables allows gradient-based solvers
to more consistently and quickly find better solutions to aircraft design optimization problems, with more robustness
to the choice of initial guess. Of course, this requires problems to be expressed as either geometric or signomial
programs, and neglects any cost (i.e. time) associated with formulating the problem. However, previous work has
demonstrated that many aircraft design relationships can be expressed naturally in a form compatible with either GP
or SP, thus making this cost relatively low.

Combining these findings, there is a strong argument for formulating and solving aircraft design problems as
geometric and signomial programs wherever possible, due to the speed and robustness advantages they hold over more
general NLP approaches.

IV. Acknowledgments
This work was sponsored by a NASA Aeronautics Fellowship. The authors thank Berk Ozturk for providing the SP
used in the second test case.

References
[1] Hoburg, W. and Abbeel, P., “Geometric programming for aircraft design optimization,” AIAA Journal, Vol. 52, No. 11, 2014,

pp. 2414–2426.

[2] Kirschen, P., York, M., Ozturk, B., and Hoburg, W., “Application of Signomial Programming to Aircraft Design,” AIAA
Journal of Aircraft, 2018, doi: 10.2514/1.C034378.

[3] Boyd, S., Kim, S.-J., Vandenberghe, L., and Hassibi, A., “A tutorial on geometric programming,” Optimization and engineer-
ing, Vol. 8, No. 1, 2007, pp. 67–127.

[4] MATLAB, version 9.3.0 (R2017b), The MathWorks Inc., Natick, Massachusetts, 2017.

[5] Vanderbei, R. J. and Shanno, D. F., “An interior-point algorithm for nonconvex nonlinear programming,” Computational
Optimization and Applications, Vol. 13, No. 1-3, 1999, pp. 231–252.

[6] Byrd, R. H., Gilbert, J. C., and Nocedal, J., “A trust region method based on interior point techniques for nonlinear program-
ming,” Mathematical Programming, Vol. 89, No. 1, 2000, pp. 149–185.

[7] Byrd, R. H., Hribar, M. E., and Nocedal, J., “An interior point algorithm for large-scale nonlinear programming,” SIAM
Journal on Optimization, Vol. 9, No. 4, 1999, pp. 877–900.



[8] Waltz, R. A., Morales, J. L., Nocedal, J., and Orban, D., “An interior algorithm for nonlinear optimization that combines line
search and trust region steps,” Mathematical programming, Vol. 107, No. 3, 2006, pp. 391–408.

[9] Nocedal, J. and Wright, S., Numerical optimization, Springer Science & Business Media, 2006.

[10] Kroo, I., “PASS, program for aircraft synthesis studies,” Software Package, Desktop Aeronautics, Palo Alto, CA, 2005.

[11] Burnell, E. and Hoburg, W., “GPkit,” https://github.com/convexopt/gpkit, 2016, Version 0.4.0.

[12] ApS, M., The MOSEK C optimizer API manual. Version 7.1 (Revision 41)., 2015.

[13] Ozturk, B., Title TBC, Master’s thesis, Massachusetts Institute of Technology, 2018 (expected).

https://github.com/convexopt/gpkit

	Introduction
	Geometric Programming
	Signomial Programming
	Choice of Solvers

	Test Cases
	Geometric Program
	Signomial Program

	Conclusion
	Acknowledgments
	References

