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Aircraft design benefits from optimization under uncertainty since design feasibility and performance can have
large sensitivities to uncertain parameters. Legacy methods of uncertainty protection do not adequately explain the
tradeoffs between feasibility and optimality, and they require prior engineering knowledge that may not be available
for new system concepts. Furthermore, stochastic optimization over parameter distributions is computationally
intractable for solving high-dimensional nonlinear design optimization problems. This paper proposes an efficient
solution method for engineering design optimization problems under uncertainty using robust signomial programs
(RSPs). Signomial programs (SPs) have demonstrated potential in solving multidisciplinary optimization problems,
and the formulation of RSPs enables conceptual design that captures parametric uncertainty with probabilistic
guarantees of constraint satisfaction. The proposed method transforms stochastic optimization problems to
deterministic problems by considering the worst-case robust counterpart of each design constraint over a
parameter uncertainty set, provided that each constraint is SP representable. The RSP formulation extends an
existing robust geometric program (RGP) formulation by allowing difference-of-log-convex constraints that appear
in many design problems. The RSP is solved efficiently and deterministically using a sequence of local RGP
approximations. RSPs are then applied to unmanned aircraft design, and they are used to rigorously explore the
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tradeoff between robustness and optimality in design decisions.

I. Introduction

EROSPACE design exists in a niche of design problems where

“failure is not an option.”# This is remarkable since acrospace
design problems are rife with uncertainty about technological capa-
bilities, environmental factors, manufacturing quality, and the future
state of markets and regulatory agencies. Optimization under uncer-
tainty seeks to provide designs that are robust to realizations of
uncertainty in the real world and can reduce the high risk of aerospace
programs.

Optimization has become ubiquitous in the design of engineered
systems, and especially aerospace systems, as computing has im-
proved dramatically and designs have continued to approach the
limits of the second law of thermodynamics. Optimization under
uncertainty has been identified by academia and industry as an area of
opportunity in multiple review papers [1,2], and we detail some of its
potential benefits as follows.

The uptake of new design tools in the aerospace industry has been
low due to heavy reliance on legacy design methods and prior
experience when faced with risky design propositions. Legacy tools
have been predominant even in the design of novel configurations
where experience in and understanding of the design tradespaces is
lacking. Since new tools for design under uncertainty will better
evaluate risk than legacy tools, there will be increased confidence
in and uptake of new design tools.

Design under uncertainty will allow for a better understanding of
the tradeoff between risk and performance. Optimization tools that
rigorously consider uncertainty will yield designs that are less
conservative than traditional designs while meeting the same reli-
ability requirements. These tools will also better evaluate the viability
of new concepts and configurations relative to legacy methods since
they will capture the effects of technological uncertainty.
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Finally, design under uncertainty will enable guarantees of con-
straint satisfaction under uncertainty. Designs will be more robust to
uncertainties in manufacturing quality, environmental factors, tech-
nology level, and markets; and they will be better able to handle off-
nominal operating conditions.

In economics, the idea that risk is related to profit is well under-
stood and leveraged. In aerospace engineering, however, we often
forget that risk aversity necessarily results in lower performance.
Considering that conceptual design hedges against program risk,
the tractable robust optimization (RO) frameworks proposed in this
paper will give aerospace engineers the ability to rigorously tradeoff
robustness to uncertainty with the performance penalties that result.

A. Approaches to Optimization Under Uncertainty

Faced with the challenge of finding designs that can handle
uncertainty, the aerospace field has developed a number of methods
to design under uncertainty. Oftentimes, aerospace engineers will
implement margins in the design process to account for uncertainties
in parameters that a design’s feasibility may be sensitive to, such as
material properties or maximum lift coefficient. Another traditional
method of adding robustness is through multimission design [3],
which ensures that the design is able to handle multiple kinds of
missions in the presence of no uncertainty. This is a type of finitely
adaptive optimization geared to ensure performance in off-nominal
operations.

These legacy methods have several weaknesses. They provide no
quantitative measures of robustness or reliability [1]. They rely on the
expertise of an experienced engineer to guide the design process,
without explicit knowledge of the tradeoff between robustness and
optimality [2]. This is a dangerous proposition, especially in the
conceptual design phase of new configurations, since prior informa-
tion and expertise are not available. In these scenarios, it is especially
important to implement physics-based tools to explore the design
space [3]. Furthermore, legacy methods are often too conservative,
ruling out potentially beneficial technologies and configurations due
to the inability to adequately trade off performance and risk.

There are two rigorous approaches to solving design optimization
problems under uncertainty, which are stochastic optimization (SO)
and RO, contrasted in Fig. 1 and defined as follows. Note that
stochastic optimization is an overloaded term, and it exists in at least
two contexts in the literature. The first is the solution of deterministic
problems with stochastic search space exploration. The second is the
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Fig. 1 SO and RO methods for optimization under uncertainty that use different definitions of uncertain inputs and produce different objective

outcomes.

solution of design optimization problems with stochastic parameters,
which is the focus of this paper.

SO pairs well with gradient-based approaches to solving nonlinear
optimization problems such as those defined in Refs. [4—6]. These
approaches implement an iterative process where the objective func-
tion and constraints are evaluated over an initial design, and first- and/
or second-order information is used to converge the design toward a
local optimum. In this context, SO problems deal with uncertainty by
including probability distributions of the uncertain parameters in the
iteration, as well as propagating the distributions through the physics
of a design problem to ensure constraint feasibility with certain
probability. The predominant goal of SO is to optimize some distri-
butional characteristics (e.g., the mean as in Fig. 1) of the probability
density function of the objective [7].

There have been recent developments in multimission aircraft
design using SO. Liem et al. [5] propose the use of optimally
weighted objective functions over an aircraft’s operational design
envelope for robust aircraft design. In following work, Liem et al.
generate probability distributions of uncertain parameters from data
and minimize the expectation of an objective function over parameter
distributions [6]. Although these stochastic methods demonstrate
significant improvements over legacy design methods in terms of
design robustness, they do not address many of the aforementioned
challenges of legacy design methods in capturing the robustness-
optimality tradeoff. The scope of the design problems is narrow and
limited to aerostructural optimization, and the number of uncertain
parameters is low. The formulations assume the presence of data,
limiting the effectiveness of the methods in conceptual design. They
have large computational costs that are somewhat mitigated through
surrogate modeling but would be detrimental in the conceptual
design phase. Most importantly, they lack rigorous mathematical
assessments of design feasibility under uncertain parameters.

In contrast to SO, RO can only be applied to mathematical programs
that have a robust counterpart, such as linear, quadratic, semidefinite,
and geometric programs. RO takes a different approach than SO in both
the form of uncertain inputs and the objective functions. RO produces
designs that are immune to constraint violations as long as parameter
values come from within a defined uncertainty set. The objective of RO
is to optimize the worst-case objective outcome of a design for a given
set over the uncertain parameters. As such, RO avoids the need to
sample and propagate probability distributions, and it turns SO prob-
lems into deterministic problems that are efficiently solved.

B. Comparison of Robust and Stochastic Optimization Methods for
Conceptual Design

Both RO and SO have relative advantages in implementation. This
paper will argue specifically that the formulation of conceptual

engineering design problems under uncertainty as RO problems
has advantages over SO formulations (a more mathematical program-
ming-centric comparison is made in Ref. [8]).

1. Generality and Tractability

In the context of engineering, we claim that an optimization
method is general when it can be used to solve a range of problems
of interest. On the other hand, tractability describes whether or not the
problems are solved to a satisfactory optimum within a reasonable
computational time. Optimization under uncertainty is a difficult task
that puts these two desirable subjective traits at odds with each other.

SO has the advantage of generality. SO methods are easily appli-
cable to black box models or input—output systems. They require little
knowledge, if any, about the constraints in the system of interest. RO
methods are less general since they require the design objective and
constraints to be explicit and cast in a form that has a worst-case
counterpart. Thus, models for RO have to be transparent; and RO
cannot be applied to black box models without significant prior data
manipulation and fitting at a minimum. A mitigating factor is that
many classes of conceptual engineering design problems can be cast or
approximated in a form that is compatible with robust optimization.

On the other hand, RO is more tractable than SO due to the
difference in method of uncertainty propagation. As mentioned in
Sec. LB, SO methods involve the propagation of probability densities
throughout a model to determine their effects on constraint feasibility
and the objective function. This requires the integration of the product
of probability distributions with potential outcomes; and since the
integration of continuous functions is difficult, this is often achieved
through a combination of high-dimensional quadrature and discreti-
zations of the uncertainty into possible scenarios. This propagation
method results in a combinatorial explosion of possible outcomes
that need to be evaluated to determine constraint satisfaction and
the distribution of the objective. As a result, few problems can be
addressed purely through SO (e.g., recourse problems [9,10]; the
energy planning problem [11]; and certain aircraft design problems
[5,6]), and even these are limited by combinatorics and costly system
evaluations. Furthermore, they require problem-specific approxima-
tions so that generality is compromised. Robust versions of tractable
optimization problems are not guaranteed to be tractable; but in
practice, the aforementioned classes of optimization problems have
tractable robust formulations [8]. In RO, there are no separate opti-
mization and evaluation loops by construction, and thus RO problems
can be solved to optimality many orders of magnitude faster than SO
problems of the same form [§].

Conceptual design optimization values both generality and trac-
tability: the former because engineers would like to apply methods
for optimization under uncertainty without significant mathematical
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groundwork, and the latter because fast solution times are critical to
reduce programrisk early on in the design process when more aspects
of the design are fluid. From this perspective, the relative intractabil-
ity of SO-based approaches makes them unreliable for conceptual
design since significant time is needed both to develop problem-
specific tractable formulations and to find satisfactory optima. Fur-
thermore, many engineering design problems such as aircraft design
can be posed as optimization problems that have tractable robust
counterparts, making RO better suited to conceptual design.

2. Use of Data

SO problems generally require complete knowledge of the proba-
bility distribution of parameters. RO requires only “modest assump-
tions about distributions, such as aknown mean and bounded support”
[12]. Since RO does not require as much information about uncertain
parameters as SO does, it can better address conceptual design prob-
lems where there is a lack of experience or sparse and noisy data [8]. It
is arguable that RO leaves a lot on the table by not taking advantage of
distributional information about the uncertain parameters; however,
there is a growing body of research on distributionally robust opti-
mization [13,14], which seeks to leverage existing data.

3. Stochasticity and Probabilistic Guarantees

Although RO problems solve problems with uncertainty, RO
formulations result in deterministic? solutions that are immune to
all possible realizations of parameters in an uncertainty set [8]. There
is extensive literature on RO methods that offer differing levels
of conservativeness [15], depending on the kind of uncertainty set
considered, that are guaranteed to be feasible over the uncertainty set
of interest.

SO formulations provide no probabilistic guarantees since the
optimum depends on realizations of random variables [16]. This is
not satisfactory from an engineering perspective, since optimization
runs over the same parameters may result in different solutions.
Furthermore, designs can be sensitive to issues in sampling schemes
over potentially unknown probability distributions. In the context of
engineering design, the determinism and probabilistic guarantees of
RO make it superior to SO.

It is important to highlight that, although both RO and SO seek to
address the problem of optimization under uncertainty, they solve
fundamentally different problems. In an ideal world where we have a
problem that is tractable and globally optimal for both methods, the
two different approaches would result in different solutions.

C. Geometric and Signomial Programming for Engineering Design

Geometric programming? is a method of log-convex optimization
that has been developed to solve problems in engineering design [17].
Although theory of the geometric program (GP) has existed since the
1960s, GPs have recently experienced a resurgence due to the advent
of polynomial-time interior point methods [18] and improvements in
computing. They have been applied to a range of engineering design
problems with success. For a nonexhaustive list of examples, please
refer to Ref. [19].

GPs have been effective in aircraft conceptual design [20,21].
However, the stringent mathematical form of a GP means it can only
be applied to log-convex problems. The signomial program (SP) is
the difference-of-log-convex extension of the GP that can be applied
to solve this larger set of problems, albeit with the loss of some
mathematical guarantees compared to the GP [22]. Aircraft pose
some of the most challenging design problems [3], and signomial
programming has been used to great effect in modeling and designing
complex aircraft at a conceptual level quickly and reliably, as in
Refs. [3,22,23]. Other interesting applications for SPs such as in
network flow problems are being investigated.

SDeterminism in this case refers to the outcomes of free variables in the
optimization model. Different instances of a deterministic design problem
with the same parameters will result in the same solution.

IProgramming refers to the mathematical formulation of an optimization
problem.

Robust formulations exist for solving geometric programs with
parametric uncertainty [24]. The creation of a robust signomial
programming framework to capture uncertainty in engineering
design, and specifically aircraft design, will allow us to have more
confidence in the results of the conceptual design phase, reduce
program risk, and increase overall system performance.

D. Contributions

This paper proposes a tractable robust signomial program (RSP)
that we solve as a sequential robust geometric program (RGP),
allowing us to implement robustness in non-log-convex problems
such as aircraft design. We extend the RGP framework developed by
Saab et al. [24] to SPs, and we implement it as part of an existing
open-source optimization framework in Python [25,26]. We imple-
ment the RSP formulation on a conceptual aircraft design problem
with over 100 variables, as defined in Ref. [27]. The benefits of RO
are demonstrated both in ensuring design feasibility and performance
using Monte Carlo (MC) simulations of the uncertain parameters. We
further explore the benefits of RO in multiobjective optimization, and
we propose a goal programming RSP formulation for risk minimi-
zation problems.

II. Mathematical Background
A. Robust Optimization
Given a general optimization problem under parametric uncer-
tainty, we define the set of possible realizations of uncertain vector of
parameters u in the uncertainty set /. This allows us to define the
problem under uncertainty below, with objective f(, and constraints
fi over design variables x and uncertain parameters u:

min  fo(x, u)

subject to  fi(x,u) <0, VYueld,i=1,...,n

In the trivial case when U has a single element, we recover the
deterministic problem where parameters u are fixed and certain.
The problem of interest, however, has parametric uncertainty over
continuous variables, for which I/ is a nonempty set with countably
infinite members. This general problem is infinite-dimensional since
it is possible to formulate an infinite number of constraints with the
countably infinite number of possible realizations of u € U. To
circumvent this issue, we can define the following robust formulation
of the uncertain problem as follows:

min  fo(x, u)

subjectto max f;(x,u) <0,i=1,...,n
ueld

This formulation hedges against the worst-case realization of the
uncertainty in the defined uncertainty set. The set is often described
by a norm, which contains possible uncertain outcomes from distri-
butions with bounded support

min  fo(x, u)

subjectto max f;(x,u) <0,i=1,...,n
u

Jull <T ey

where I' is defined by the user as a global uncertainty bound. The
larger the I, the greater the size of the uncertainty set that is protected
against.

B. Geometric Programming

A geometric program in posynomial form is a log-convex opti-
mization problem of the form:
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min f(u)
subjectto  fi(w) <1,i=1,....m,
hw=1i=1,....,m, ?2)

where each f; is a posynomial, each h; is a monomial, m,, is the
number of posynomials, and m, is the number of monomials. A
monomial 4 (u) is a function of the form

hi(u) = e 1_[ u;’” 3)
=1

where a;; is the jth component of a row vector a; in R", u; is the jth
component of a column vector # in R” , and b; is in R. An example of
a monomial is the lift equation L = (1/2)pV?C,S. A posynomial

f(w) is the sum of K € Z* monomials:

K n
fiw) = et [Jui® “)
k=1 j=1

where ay; is the jth component of a row vector a;; in R”, u; is the
Jjth component of a column vector » in R’ , and b;; is in R [19].
The stagnation pressure definition is a good example: P, =
P+ (1/2)pV>.

A logarithmic change of the variables x; = log(u;) would turn a

C. Signomial Programming

A signomial can be defined as the difference of two posynomials.
Consequently, a SP is a non-log-convex optimization problem of the
form

minimize f(x)

subjectto  fi(x) —g;(x) <0,i=1,....,m @)

where f; and g; are both posynomials, and x is a column vector in R".

Reliably solving a SP to a local optimum has been described in
Refs. [19,28]. A common solution heuristic involves solving a SPas a
sequence of GPs, where each GP is a local approximation of the SP.
Although signomial programming is a powerful tool, applications
involving SPs are usually prone to uncertainties that have a signifi-
cant effect on the solution.

III. Robust Signomial Programming

As apreview of the following sections, robust signomial program-
ming assumes that parameter uncertainties belong to an uncertainty
set and solves a reformulated design problem to find the best solution
through the process shown in Fig. 2. As long as the original opti-
mization problem is SP compatible, a tractable robust formulation of
the problem exists, making this method general. We derive the
intractable formulation of a RSP below.

A SP in exponential form is as follows:

monomial into the exponential of an affine function and a posynomial min  f(x)

into the sum of exponentials of affine functions. A transformed © G

monomial /;(x) is of the form subject to Z eGux b _ Z et <0 Yiel,....m (8)
k=1 k=1

hi(x) = e~ +bi (%)

where x is a column vector in R”. A transformed posynomial f;(x) is
the sum of K; € Z* monomials:

K
fi(x) = Z eaikx-%—b,-k (6)
=1

where x is a column vector in R”. A geometric program with trans-
formed constraints is a geometric program in exponential form, and it
is a convex optimization problem.

The positivity of exponential functions restricts the space spanned
by posynomials and limits GPs to certain classes of problems.
However, since many engineering problems of interest have purely
positive quantities, GPs are quite applicable; and certain variable
transformations can make problems with negative quantities trac-
table. The restriction of posynomials to the less-than side of inequal-
ities is a more significant barrier, and it motivates the introduction of
signomials.

where the constraints are represented as the difference of posyno-
mials in exponential form. Let a;; and ¢;; be the ((i — 1) X m + k)th
rows of the exponents matrices A and C, respectively, and let b;;, and
dj be the ((i — 1) X m + k)th elements of the coefficients vectors b
and d, respectively.

The data (A, C, b, d) are assumed to be uncertain and living in an
uncertainty set{, where U/ is parametrized affinely by a perturbation
vector {:

L
U= {[A;C;b;d] =[A%C%b°d%] + ZC/[A’;CZ;b’;d’]} ©
=1

where A°, C°, b, and d° are the nominal exponents and coefficients;
{ADE | {CBE |, {(b'}L |, and {d'}L_, are the basic shifts of the
exponents and coefficients; and ¢ is the /th component of { belong-
ing to a perturbation set Z € R such that

Z={CeR:{| <T} (10

Robust
Signomial
Programming
Determine
Requirements Modeling SP compatible uncertainties Distributional
configuration models information
Signomial Model uncertainties
Programming

Optimal solution

sensitivities

Reformulate
constraints

<=

Generate
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Fig.2 Block diagram showing the difference between the design process using a SP and a RSP.
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As mentioned previously, our goal is a formulation that is immune
to uncertainty in the data. Accordingly, the robust counterpart of the
uncertain SP in Eq. (8) is

min  f(x)
K; Gi
subjectto max e®i(©x+by () _ eCiOx+di O\ <
w3 2 <
Viel,....m (11)

The optimization problem in Eq. (11) is intractable using current
solvers; therefore, a heuristic approach to solving RSPs approxi-
mately as a sequential RGP will be presented in the following
sections. As our approach is based on robust geometric program-
ming, a brief review of the subject will follow based on Ref. [24].

IV. Robust Geometric Programming

This section presents a brief review of the approximation of an
RGP as a tractable optimization problem as discussed in Ref. [24].
The robust counterpart of an uncertain geometric program is

K,
min  fo(x) subjectto max{ e"f’k@”blk@)} <1,
’ jectio. x| 2 (12)
Viel,....m

which does not have an tractable exact reformulation due to its co-NP
hardness [29].

A. Simple Conservative Formulation

One way to approach the intractability in Eq. (12) is to replace each
constraint by a tractable approximation. Replacing the maximum of
the sum in Eq. (12) by the sum of the maximum will lead to the
following formulation:

min  fy(x) subject to

; (13)
max{e®@ by <1 Viel,....,m
ez

=

~
I

1

Maximizing a monomial term is equivalent to maximizing an affine
function; therefore. Eq. (13) is tractable.

B. Equivalent Intermediate Formulation

This formulation is equivalent to the formulation in Eq. (12) but
with smaller, easier to handle posynomial constraints. By the proper-
ties of inequalities, the posynomial P in posynomial inequality
M > P can be divided into an equivalent set of smaller posynomials
based on the dependence between its monomial terms. Figure 3
shows how a constraint can be represented as an equivalent set of
smaller posynomial constraints.

P =M, +M, + My + M, +Ms + Mg

A/

f+h+t <1
max{S1} = max{M; + M3 + My} <1t

Pr<1
max{P} <1 max{S,} = max{M, + Ms} s

max{S3} = max{Ms} <t

Fig. 3 Partitioning of a large posynomial into smaller posynomials,
requiring the addition of auxiliary variables. S; are posynomials with
independent sets of variables.

The posynomial constraints are categorized into three sets: large
posynomials, two-term posynomials, and monomials, represented by
S, S5, and S5, respectively. Monomials are tractable, and two-term
posynomials can be well approximated using piecewise-linear func-
tions [30]. We implement the following two tractable approximations
for large posynomials.

1. Linearized Perturbations Formulation

If the exponents are known and certain, then uncertain large pos-
ynomial constraints can be approximated as signomial constraints.
The exponential perturbations in each posynomial are linearized using
a modified least squares method, and then the posynomial is robus-
tified using techniques from robust linear programming. The resulting
set of constraints is SP compatible, therefore, a RGP can be approxi-
mated as a SP.

2. Best Pairs Formulation

If the exponents are also uncertain, then large posynomials cannot
be approximated as a SP, and further simplification is needed. This
formulation aims to maximize each pair of monomials in each
posynomial while finding the best combination of monomials that
gives the least conservative solution. Reference [24] provides the
descent algorithm used to find such locally optimal monomial com-
binations. Additionally, it demonstrates that a GP with uncertain
exponents can be approximated as a GP for polyhedral uncertainty,
and a conic optimization problem for ellipsoidal uncertainty. For a
specific description of the descent method and the form of approxi-
mate RGP formulations, please refer to [24].

V. Approach to Solving Robust Signomial Programs

This section presents a heuristic algorithm to solve a RSP based on
our previous discussion on robust geometric programming.

A. General RSP Solver

As mentioned in Sec. II.C, acommon heuristic algorithm to solve a
SPis by sequentially solving local GP approximations. Similarly, our
approach to solve a RSP is based on solving a sequence of local RGP
approximations. In Fig. 4, we provide a step-by-step algorithm. In
this heuristic, a good initial guess will lead to faster convergence and
possibly a better solution. The solution of the SP without uncertainty
is in general a good candidate x;.

For comparisons between methods ahead, we write the algorithm
explicitly as follows:

1) Choose an initial guess x.

2) Repeat:

a) Find the local GP approximation of the SP at x;.
b) Find the RGP formulation of the GP.

¢) Solve the RGP to obtain x; ;.

d) If x;, | = x;, break.

Any of the previously mentioned methodologies can be used to
formulate the local RGP approximation. However, depending on the
RGP formulation chosen to solve an RSP, the formulation and
solution blocks in Fig. 4 are adjusted.

B. Best Pairs RSP Solver

If the best pairs methodology is exploited, then the preceding
algorithm would change so that each iteration would solve the local
RGP approximation and choose the best permutation for each large
posynomial. The modified algorithm is then as follows:

1) Choose an initial guess x;.

2) Repeat:

a) Find the local GP approximation of the SP at x;.
b) For each large posynomial constraint, select the new permu-
tation ¢ such that ¢) minimizes the robust large constraint evaluated

at X;.

¢) Solve the approximate tractable counterparts of the local GP
in Eq. (12), and let x;, | be the solution.
d) If x; | = x;, break.
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Fig. 4 Block diagram showing the steps of solving a RSP.

C. Linearized Perturbations RSP Solver

If the linearized perturbations formulation is to be used, there is an
additional challenge in that the robust counterpart of each local GP is
a SP. To approximately solve the resulting SP at each iteration, the
signomial constraints in each robust approximation are themselves
locally approximated by GP-compatible constraints. The algorithm
then becomes as follows:

1) Choose an initial guess x.

2) Repeat:

a) Find the local GP approximation of the SP at x;.

b) Robustify the constraints of the local GP approximation using
the linearized perturbations methodology.

¢) Find the local GP approximation of the resulting local SP
at x i

d) Solve the local GP approximation in step ¢ to obtain x;, .

e) If x; | = x;, break.

VI. Models

We implement the aforementioned RSP formulation on an
unmanned gas-powered aircraft design problem that is systemati-
cally developed in Ref. [27] with the ellipsoidal fuselage model
borrowed from Ref. [21]. We optimize a wing, fuselage, and engine
given a payload and range requirement. The optimization model
was developed using GPkit (a Python package that provides abstrac-
tions for using GPs in engineering design [26]) and captures funda-
mental tradeoffs in aircraft design. The nominal model has 175
variables and 153 constraints: a common level of sparsity for GP
and SP models. A short qualitative overview of the model follows;
for more detailed information, please refer to Refs. [21,27]. The
uncertainties associated with the parameters will be described in
Sec. VII.

A. Flight Profile

The flight profile model is borrowed from Ref. [3]. Within the
model, the trajectory of the aircraft is optimized over four steady
flight segments.

B. Atmosphere

The atmosphere model is taken from Ref. [31] and considers
changes in density and dynamic viscosity with altitude for a standard
atmosphere.

C. Aircraft

The aircraft is modeled as a wing, fuselage, and engine system. The
aircraft is assumed to be in steady flight so that the thrust power is
equal to the sum of the drag power and rate of change of potential
energy of the aircraft; and the lift is equal to the total weight, ignoring
the vertical component of thrust in climb. Its total weight is the sum of
its components. The aircraft has to be able to take off at specified
minimum speed without stalling as well. Aircraft component models
are detailed as follows.

1. Wing

Lift is generated by the wing as a function of its geometry and
freestream conditions. The wing structure model is based on a beam
model with a distributed lift load and a point mass in the center
representing the fuselage. Wing fuel volume is modeled as a fraction
of the internal volume available in the wing. The weight of the wing is
the sum of skin and spar weights. Its drag is the sum of induced and
profile drags, the latter of which is constrained by a three-term
softmax-affine posynomial fit [32] of drag polars generated in
XFOIL [33]. The airfoil used was designed by Professor Mark Drela
of Massachusetts Institute of Technology and is a variant of those
implemented in Ref. [21].

2. Fuselage

The fuselage contains the fuel and payload internally, and it
contains the engine externally. It is assumed to be ellipsoidal in
shape, and its drag is estimated using a form factor. The fuselage is
assumed not to contain any structural members, and so its weight
consists only of skin weight.

3. Engine

The aircraft is powered by a naturally aspirated piston engine. It is
subject to power lapse at lower air densities at higher altitudes.
Engine weight versus maximum sea level power as well as brake
specific fuel consumption versus thrust and altitude are modeled
using the posynomial fits of engine performance data from Ref. [34].

D. Source of Non-Log Convexity: Fuel Volume

The fuel models have been detailed in the previous sections, but it is
noteworthy that the signomial constraint in the optimization appears in
the aircraft total fuel volume constraint, as shown in Eq. (14):

Vi<V T Vi (14)

The signomial constraints makes the problem non-log convex, which
means that the solution methods detailed by Saab [24] need to be
extended to accommodate this optimization problem.

VII. Uncertainties and Sets

As mentioned in Sec. LB, one of the advantages of RO over SO is
the fact that it only requires as inputs the uncertainty set size instead of
complete probability distributions over each parameter. In the context
of this work, the set size is defined relatively in each uncertain design
parameter u; by 30;, and it is defined globally by scalar parameter I'.
An illustration of the relationship between 3¢’s and I" is provided in
Fig. 5, and it is explained in Secs. VIL.A and VILB.

A. Design Parameter Uncertainties

The relative size of the uncertainty set in each uncertain variable is
given by three times the coefficient of variation (CV),= as listed in

**The CV is defined as follows: CV = ¢/|u|, where is the standard
deviation and is the mean of the parameter.
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Fig. 5 T defines the overall size of norm uncertainty sets, whereas 3¢ defines the relative size of the set in each uncertain parameter.

Table 1. Since for the rest of this work all standard deviations ¢ are
normalized by the means of the parameters, we will use 30 to
represent three CVs.

In this case of a conceptual aircraft design with no prior data, the
parameter uncertainties reflect aerospace engineering intuition.
The wing weight coefficients Wooefr e and Wooetr surr, as well as
the ultimate load factor N, have large 36 because the build quality
of aircraft components is often difficult to quantify with a large degree
of certainty. The payload weight and density (W, and p,,) have large
uncertainties since the payload is often developed concurrently with
the aircraft. Parameters that engineers take to be physical constants
(sea level air viscosity and density, 4 and p) and those that can be
determined with a relatively high degree of accuracy (e) have rela-
tively low deviations. Parameters that require testing to determine
(CL max> Cfref» and Vi) have a level of uncertainty that reflects the
expected variance of empirical studies. However, note that these
quantities are ultimately picked by the designer using prior experi-
ence and data, and the level of conservativeness in the design will be
greatly affected by the chosen 3o.

B. Uncertainty Sets Considered

The robust design problem is solved for box and ellipsoidal
uncertainty sets, which are defined by the Loo and L2 norms, and
bounded by varying the parameter I'. Intuitively, for both sets, I" is a
global measure of how much risk is being hedged against; it affects all
parameter uncertainties simultaneously. I' = 0 implies that all of the
parameters take their nominal values with zero uncertainty, which we
call the nominal problem, and larger I" protects against greater
uncertainty. I' is more rigorously defined in the context of robust
linear programming in the Appendix.

For box uncertainty, I" scales the width of the Loo hypercube as
shown in Fig. 5a, whose dimensionality is the same as the number of
uncertain parameters (which is 12). More intuitively, I" X 3¢; defines
the range of the possible values of uncertain parameter u; normalized
by the mean of u;. It can be easy to assume that using margins and box
uncertainty sets will yield the same designs, but they fundamentally

function differently. First, the worst-case outcome in box uncertainty
can come from the interior of the uncertainty set instead of the corner
of the hypercube considered by margins. Furthermore, there is no
guarantee (and it is unlikely) that the chosen corner (i.e., particular
allocation of margins) is the most conservative point in the uncer-
tainty set. Itis even possible that the wrong sign of margin is allocated
for certain parameters since SPs are nonlinear and local sensitivities
cannot be used reliably to intuit global behavior. Consider in this
particular example the sea level air density p. Higher air density is
better for takeoff performance and naturally aspirated engine perfor-
mance, but it results in higher drag; so, it is difficult for a designer to
determine how to best allocate margin on p. Thus, for the rest of this
paper, the direction of margins is determined using the local sensi-
tivities of the nominal solution, which are obtained at no extra
computational cost in the solution of the terminal GP approximation
of the SP. With these considerations in mind, box uncertainty is
expected to be strictly more conservative and more appropriate than
the use of margins in conceptual design since 1) margins fail to
capture the level of conservativeness they signal, and 2) prior infor-
mation (in this case, the nominal solution) is required to allocate
margin effectively.

For ellipsoidal uncertainty, I" is the maximum diameter of the
Euclidian norm ball of « as shown in Fig. 5b, where u; is one-third
the number of standard deviations of perturbation of the ith parameter
from its nominal value. Ellipsoidal uncertainty exploits the fact that
the joint probability of multiple uncertain parameters taking values in
the tails of their respective distributions is very low. So, although it
does not protect deterministically for all outcomes of the uncertain
parameters within 3o, it is expected to protect against uncertain
outcomes less conservatively than the box uncertainty set, with little
compromise in the ability of the design to satisfy constraints.

VIII. Results

We implement our RSP algorithm on the aforementioned concep-
tual aircraft design problem. Our objective function is total fuel

Table1 Parameters and uncertainties (increasing order)

Parameters Description Value Uncertainty (30), %
e Span efficiency 0.92 3
Air viscosity (SL) 1.78 x 10~ kg/(m - s) 4
p Air density (SL) 1.23 kg/m? 5
Cr max Stall lift coefficient 1.6 5
k Fuselage form factor 1.17 10
Cref Reference fuselage skin-friction factor 0.455 10
Pp Payload density 1.5 kg/m? 10
Nui Ultimate load factor 33 15
V min Takeoff speed 35 m/s 20
w, Payload weight 3000 N 20
W coeff.stre Wing structural weight coefficient 2x 1073 1/m 20
W coeft.surf Wing surface weight coefficient 60 N/m? 20

SL = sea level.
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consumption, which is to be minimized given a payload and range
requirement.

A. Mitigation of Probability of Failure

First, the optimization problem is solved in presence of no uncer-
tainty. Then, using the sign of sensitivities of the nominal solution, we
assign 30 margins for each parameter and generate a design using
margins. These two solutions are compared with RO results for box
and ellipsoidal uncertainty sets at I" = 1 using the best pairs robus-
tification method. From here onward, we refer to aircraft designed
under no uncertainty, under margins, under box uncertainty, and
under ellipsoidal uncertainty as “the nominal aircraft,” “the margin
aircraft,” “the box aircraft,” and “the ellipsoidal aircraft,” respectively.

The design variables are then fixed for each solution, and the
designs are simulated for different realizations of the uncertain
parameters. This allows for statistical analysis of design performance
and an estimate of each design’s probability of constraint violation,
which we define as its probability of failure (POF). In this MC
scheme, the random variables are simulated from independent and
identically distributed 3o truncated Gaussians. We simulate from the
truncated Gaussian since this makes it possible to confirm math-
ematically that for I = 1, all simulations of 3¢ uncertain parameters
are deterministically feasible for the box uncertainty set. The results
are in Table 1. Designs for each solution for the rest of the section are
simulated with the same MC samples for consistency.

It is noteworthy in the POF at the bottom of Table 2 that, for the
nominal problem (I' = 0), only 12% of the MC evaluations result in
feasible solutions. This means that an aircraft designed for the
average case would almost surely fail to satisfy the mission require-
ments, even with equal likelihood of favorable versus unfavorable
uncertain outcomes from the symmetric truncated Gaussian. That
being said, depending on the problem, it may be necessary to sacrifice
performance to achieve a high degree (30) of reliability as in the
solution for I' = 1. Furthermore, the margin aircraft, the box aircraft,

and the ellipsoidal aircraft spend on average 53, 55, and 39% more
fuel, respectively, than the aircraft designed for the nominal case; but
they also are robust to all uncertain outcomes in the 3¢ set for the MC
simulation.

Table 2 also indicates that margins are not a good method of
allocating uncertainty. The claim for the use of margins is that they
protect against the worst-case outcome of each parameter, but the
results show otherwise. Since the box design atI" = 1 is strictly more
conservative (worse worst-case outcome) over the 3¢ hypercube than
the margin design, we see that a margin from the interior of the
hypercube rather than its corner is more effective in protecting against
the worst case. Furthermore, there are no probabilistic guarantees that
the aircraft with margins would not fail one of the MC simulations.
Given enough samples, it is almost surely true that some MC simu-
lations will violate feasibility for the design with margins, whereas
box uncertainty guarantees deterministically that the constraints are
satisfied.

We also posited that the ellipsoidal uncertainty, although it does
not protect deterministically against all 30 uncertainties, would be
less conservative than the margin and box designs while not signifi-
cantly sacrificing POF. This is confirmed since the ellipsoidal design
fails none of the random samples, and it spends 9% and 10% less fuel
on average than the margin and box aircraft, respectively. The sig-
nificance of this cannot be understated: the use of ellipsoidal uncer-
tainty results in designs that have strictly better performance
outcomes while protecting against a similar amount of risk as designs
using margins or box uncertainty.

An analysis on the range I' = [0, 1] was performed to confirm that
the trends from Table 2 hold for all I'. Figure 6 shows that POF goes
monotonically toward zero as I' increases for all three methods,
where box uncertainty is more conservative than ellipsoidal uncer-
tainty over the whole I domain, with no such guarantees for margins.

In absolute terms, the nominal SP under zero uncertainty or with
margins takes just under 0.9 s to solve on a modern laptop computer

Table2  SP aircraft optimization results for I' = 1

Description Units__ No uncertainty  Margins Box Ellipsoidal

Free variables
L/D Mean lift-to-drag ratio —_—— 45.0 354 36.1 38.4
AR Aspect ratio —_ 38.0 25.0 24.6 28.1
Re Reynolds number ——  844x10° 1.21x10° 135x10° 1.21x10°
S Wing planform area m? 6.27 14.9 14.6 12.8
T Airfoil thickness ratio —— 0.175 0.197 0.198 0.192
Vv Mean flight velocity m/s 41.7 34.6 354 36.2
T giight Time of flight h 20.0 24.1 23.6 23.1
W, Wing weight N 1170 2080 2090 1940
W stre Wing structural weight N 792 1100 1130 1090
W surf Wing skin weight N 376 985 966 851
Wiase Fuselage weight N 151 192 177 168
w, Engine weight N 84.4 111 122 115
V¢ avail Total fuel volume m? 0.0267 0.0458 0.0502 0.0459
V¢ fuse Fuselage fuel volume m? 0.0134 0 0 0
V¢ wing Wing fuel volume m? 0.0133 0.0680 0.0667 0.0468

Sketches to scale — % — %
Metrics
Objective Total fuel weight N 214 367 402 368
E[Objective] Expected total fuel weight N 207 316 320 287
o[Objective] std. dev. of fuel weight N 11 12 12 11
P[failure] Probability of failure % 88 0 0 0
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Fig.7 Robust aircraft optimization setup and solution times, normalized by the nominal problem solution time, for I' = 1.

using MOSEK [35], which is an interior point solver that is free for
academic use; the authors refer to Refs. [3,36] for more in-depth SP
solution time analyses. In Fig. 7, we examine briefly in relative terms
how the different RSP methodologies compare in terms of setup and
run times. Since the setup time of the nominal problem is minimal, we
have normalized the results by the solution time of the nominal
problem. The bottom axis ranks the methods by their level of con-
servativeness, with best pairs and simple conservative formulations
being the least and most conservative, respectively, and where the
ellipsoidal formulations are less conservative than the box formula-
tions. For this aircraft design problem, the preferred best pairs
methodology with an ellipsoidal uncertainty set is competitive in
solution and setup times relative to other methods while providing the
least conservative solutions. Note that setup and solution times for
RSPs are highly problem specific, and so it is not possible to predict
the time performance of other RSP-compatible problems from these
results. Time performance will vary, depending on the number of
inequality constraints, the degree of coupling between monomials in
each inequality, and the RGP approximation and uncertainty set used.

B. Effect of Robustness on Multiobjective Performance

One of the benefits of convex and difference-of-convex optimization
methods is the ability to optimize for different objectives [3]. As a

demonstration, we optimize the aircraft without uncertainty for six
different objectives, and we show the nondimensionalized figures of
merit in Table 3. Since the model is physics based, the model can even
accommodate objectives such as wing area, which are often unintuitive
and not considered. The resulting aircraft differ significantly with
respect to certain objectives while being similar in many others. As an
example, takeoff weights for all aircraft are 0.87 to 1.22 times the
baseline total fuel solution, whereas engine weights vary from 0.88 to
3.62 times the baseline. These demonstrate the importance of consid-
ering many objectives in design, and they underline the power of SPs in
helping consider the multiobjective performance of engineered systems.
We demonstrate the benefits of RSPs in multiobjective optimization
by considering uncertainty while optimizing for the same objectives. We
perform the optimization of the aircraft with no uncertainty, and both
box and ellipsoidal uncertainty (I' = 1) for the objective functions in
Table 3. The resulting aircraft are sketched in Fig. 9, and their objective
performance is plotted on radar plots in Fig. 8. Radar plots are useful
because they allow engineers to visualize the performance of designs in
many dimensions. One way to envision the multiobjective performance
of the aircraft is to consider the area of the polygon defined by the
aircraft’s performance as the figure of merit; the smaller, the better.
Figure 8 shows the effects of robustness on the different worst-case
performance metrics of the different aircraft. As expected, the box

Table3 Nondimensionalized variations in objective values with respect to the aircraft optimized
for different objectives®

Objective Total fuel Total cost Takeoff weight 1/(cruise L/D) Engine weight Wing area
Total fuel 1.00 1.00 1.00 1.00 1.00 1.00
Total cost 2.51 0.64 0.98 2.55 3.62 0.98
Takeoff weight 1.37 0.89 0.87 1.43 1.42 0.87
1/(cruise L /D) 1.29 1.00 1.11 0.77 2.48 1.53
Engine weight 1.35 1.53 1.22 1.40 0.88 2.78
Wing area 1.37 0.89 0.87 1.43 1.43 0.87

“Objective values are normalized by the total fuel solution.
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Fig. 8 Radar plots of aircraft performance. Bolded titles are optimized objectives for each plot, and individual plots show nondimensionalized
multiobjective performance of aircraft, designed under different uncertainty sets.

uncertainty set is strictly more conservative than the ellipsoidal
uncertainty set in the optimized objective. However, the tradeoffs
in the others are less clear. Note that the radar plots show the worst-
case performance of the vehicles, although this analysis can also be
performed for the mean performance of the aircraft determined
through MC simulation.

This multiobjective comparison underscores the sensitivity of
different objectives to level of robustness and by extension param-
eter uncertainty. For example, the engine weight of the 1/(cruise
L /D) solution is highly sensitive to level of robustness, whereas the
engine weight of the total (time and fuel) cost of the aircraft is
insensitive. Therefore, we might want to consider total cost to be our
overall objective instead of 1/(cruise L/D) if we are relatively
averse to risk in engine versus airframe design. Robustness can
affect the efficacy of different choices of objective function in
ensuring multiobjective performance. Since RSPs can be solved
quickly and reliably over a variety of objective functions, they allow
engineers to understand these kinds of complex tradeoffs early on in
the design process.

Based on these observations, we argue that there could be
significant value left on the table if uncertainty is not considered
with sufficient mathematical rigor in early phases of the design
process. RSPs allow engineers to capture complex tradeoffs in
nonlinear optimization problems while considering uncertainty,
resulting in less conservative solutions than solutions that imple-
ment margins and other less mathematically rigorous methods for
risk mitigation. Thus, RSPs improve significantly on the para-
digms of design under uncertainty in use in the aerospace industry
today.

C. Risk Minimization Problems

All of the previous multiobjective analyses have assumed that we
have an understanding of exactly the amount of uncertainty we are
willing to tolerate. However, minimizing risk can also be the objec-
tive of our model. This would suggest the following formulation:

max I
subjectto  fi(x,u) <0, i=1,...,n
ful <T
fox) <A +0)f5. 6=>0 (15)

where f; is the optimum of the nominal problem in formulation (1);
and § is a fractional penalty on the objective that we are willing to
sacrifice for robustness, which gives (1 4 8) f§ as the upper bound on
the objective value. Intuitively, this is a form of goal programming,
where we specify the exact maximum worst-case value of an objec-
tive we can tolerate with the goal of maximizing the size of the
uncertainty set we can handle.

The goal programming problem in formulation (15) is clearly not
equivalent to the problem in formulation (1) but should yield the same
results if there is no optimality gap between the methods. To show
this, we use the worst-case objective values from the POF study
shown in Fig. 6 as the ¢ inputs to the goal programming model,
and we compare the results. The results are presented in Table 4. Note
that the two methods were evaluated MC runs using the same 100
realizations of the uncertainty for consistency in POF results.
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Fig. 9 Sketches of the aircraft drawn for corresponding radar plots.
Drawn to scale for comparison.

First, note that there are no results reported for the goal program for
zero uncertainty: I' = [0.00]. Since the feasible set of this problem is a
point design, the signomial program solution heuristic declares the
problem infeasible after being unable to locate the singular feasible
region. However, when we positively perturb the singular 6, the goal
program has a nonempty feasible set and returns the same solution as
the original RO method. Otherwise, the I" values found by the goal
program match exactly with the original RO problem. We confirm
that both methods produce the same designs by examining the
physical dimensions of the aircraft, as well as through the probability
of failure found through MC simulation in Table 4. Note that there
are small discrepancies in the POF: notably, in the values for

Table4 Results of original RO problem versus goal
program in terms of size of uncertainty set I', objective
penalty 4, and POF?*

RO form Goal form
T o POF 14 r POF

0.00 795x1075 0.88 795x107° —— ——
0.10 0.0525 0.73 0.0525 0.10  0.73
0.20 0.108 0.59 0.108 020  0.59
0.30 0.168 0.40 0.168 030  0.39
0.40 0.231 0.25 0.231 040 025
0.50 0.298 0.10 0.298 050  0.10
0.60 0.370 0.06 0.370 0.60  0.07
0.70 0.447 0.03 0.447 0.70  0.03
0.80 0.519 0.01 0.519 0.80  0.01
0.90 0.618 0.00 0.618 0.90  0.00
1.00 0.714 0.00 0.714 1.00  0.00

“Both methods use the best pairs formulation under ellipsoidal
uncertainty. The designs obtained through the two different
methods match.

I' = [0.3,0.6]. This is possible because there are uncertainty reali-
zations that can fall in or out of feasibility due to numerical preci-
sion. The interior point solvers used cannot make computations
exactly.

We can also expand this framework to perform multivariate goal
programming by changing formulation (15) to include all objectives
we are interested in:

fo,0 <(U+8)f5,. 5,20, j=l...m (16

The benefit of goal programming is that it allows us to explore
multidisciplinary tradeoffs without having to enumerate the design
space along each objective direction. The term multiobjective opti-
mization is misleading because you can only optimize for one
objective at once. The design is going to be influenced by how
engineers weigh different objectives, and it is not obvious whether
an objective should be a constraint instead. The most fundamental
choice that an engineer can make in design is what the objective
function is, and it is often the case that there are many potential
objectives that are conflicting. But, risk is ubiquitous in engineering
design problems, and so goal programming allows risk to be used as a
global design variable against which all objectives can be weighed.

IX. Potential Future Work or Studies

There are a myriad of potential extensions to signomial program-
ming under uncertainty. In the spirit of helping reduce programrisk in
aerospace design, the authors make a few observations and recom-
mendations.

In this study, we do not discriminate between the kinds of con-
straints violated. However, it would be possible to rank the severity of
constraint violations so as to penalize some (e.g., structural safety)
more heavily than others (maximum range constraint). This would
inject further realism into design under uncertainty since some
violations contribute to program risk more significantly than others.

Another potentially valuable extension to the proposed framework
is the concurrent implementation of multiple sets to contain the
uncertain parameters, with the purpose of restricting uncertain out-
comes further and reducing conservativeness. One example of this
would be to impose an LO norm as well as an L2 norm to bound the
size of uncertainty set. This method can be used to set the total size of
the uncertainty set in a Euclidian sense but then also to restrict the
uncertainty to a subset of all of the uncertain parameters. This also
turns the problem into a mixed-integer robust optimization problem,
which poses interesting computational challenges.

With respect to interesting studies, RO opens up the possibility to
discover and analyze with mathematical rigor the benefits of adapt-
able architectures in aircraft design versus more traditional point
designs. Some examples of these are modular designs, morphing
designs, adaptively manufactured designs, and aircraft families. It is
likely that these types of engineered robustness become more effec-
tive at reducing program risk in presence of uncertainty since they are
more likely to deliver value under adverse stochastic outcomes.

In situations where there are data available to aid design, RO can
help explore the design space while taking into account the sparsity of
and noise in the data. This opens up an array of potential trade studies
where engineers can learn about the exposure of designs to the quality
of data and attempt to gather data that best reduce the uncertainty in
the performance of designs.

X. Conclusions

This paper has motivated the use of RSPs in conceptual engineer-
ing design in lieu of the mathematically nonrigorous methods of
optimization under uncertainty widely used in the aerospace industry
today. A tractable RSP formulation has been developed in response to
a need to optimize over uncertain parameters, extending an existing
tractable approximate RGP framework to non-log-convex problems.
This RSP formulation is a valuable contribution to the fields of robust
optimization and difference-of-convex programming.
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RSPs have a wide variety of potential applications in engineering
design. The use of RSPs in conceptual design is demonstrated to
result in systems that are more robust to uncertainties in operational
parameters, such as payload mass and range, as well as uncertain
environmental and manufacturing parameters. Unlike legacy meth-
ods, this robustness has probabilistic guarantees, where sets of size
I' = 1 protect against all realizations of uncertainty for a given set of
parameters. Thus, engineers can use robust signomial programming
to trade off robustness and optimality within engineered systems in a
tractable and mathematically rigorous manner.

Robust designs under box and ellipsoidal uncertainties were
compared to a design implementing margins. It was confirmed
that designs using box uncertainty are strictly more conservative
than designs using margins. This indicates that the traditional
method of allocating margins by observing the local sensitivities
of the nominal solution is inadequate since it does not represent
the worst-case outcomes of 30 uncertain parameters as claimed.
Furthermore, it is shown that box uncertainty has approximately
the same expectation and standard deviation as the solution with
margin but provides probabilistic guarantees of feasibility, unlike
its counterpart.

It was also confirmed that ellipsoidal designs are strictly less
conservative than margin or box designs while protecting against
the same parametric uncertainties. Since designs found using RSP
under ellipsoidal uncertainty are less conservative than designs found
through traditional methods, RSPs have the potential to reduce the
program risk and increase the performance of designs compared to
traditional methods with no sacrifice in reliability.

RO has the potential to change current aerospace design paradigms
by introducing mathematical rigor to design under uncertainty.
Current aerospace conceptual design practices still rely heavily on
the expertise of established engineers, even in the absence of prior
experience exploring the design space. RSPs provide new opportu-
nities in aerospace conceptual design since they are compatible
with physics-based models that are deprived of or lacking in
data, and they bring quantitative measures of design reliability to the
table.

Appendix: Robust Linear Programming: A Quick Review

As mentioned earlier, principles from robust linear programming
are used formulate an approximate robust geometric program.
Consider the system of linear constraints

Ax+b<0
where

AismXn
xisn X1
bismx1 (A1)

where the uncertain data are contained in a set defined by Eqgs. (9)
and (10).

A.1. Box Uncertainty Set

If the perturbation set Z given in Eq. (10) is a box uncertainty set
(i.e., ¢l <), then the robust formulation of the ith constraint is
equivalent to

Y |-bl-alx|+alx+b?<0 (A2)

L
=1

If only b is uncertain (i.e., Al=0,vl=1,2,...,L), then Eq. (A2)
becomes

L L
> akx+ b0 +T) |b<0 (A3)
1=1 =1

which is a linear constraint.
On the other hand, if A is uncertain, Eq. (A2) is equivalent to the
following set of linear constraints:

L
> wl+adx+b)<0
=1

-bl—alx<wl, Viel,... L
bl+alx<wl, Viel,...,.L (A4)

A.2. Ellipsoidal Uncertainty Set
If the perturbation set Z is an ellipsoidal, i.e.,

L
=19

then the robust formulation of the ith constraint is equivalent to

<

<1?

~m

r o} (-bl—alx)> + ax +b? <0 (AS5)

L
=1
which is a second-order conic constraint.

Ifonly bisuncertain (i.e., Al = 0,Vl = 1,2,..., L), thenEq. (A5)
becomes

L L
dalx+b)+T | Y a2(b)? <0 (A6)
=1 =1

which is a linear constraint.

A.3. Norm-1 Uncertainty Sets

If the perturbation set represented by Z is a norm-1 uncertainty set
(i.e., [|C]|; £T), then the robust constraint is

L
Za?x+b?+l"l r{laxL|bf| <0 (AT)
=1 IR

when A/ = 0, and

Fw;, +ax + b <0
-bl—alx<w;, Viel,... L

bf—f—afxgw,-, Viel,...,L (A8)

if A’ # 0. Note that for this type of uncertainty, the robust constraints
are linear.
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