
Application of Signomial Programming to Aircraft Design

Philippe G. Kirschen,∗ Martin A. York,† Berk Ozturk,‡ and Warren W. Hoburg§

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

DOI: 10.2514/1.C034378

Due to the coupled nature of aircraft design, it is important to consider all major subsystems when optimizing a

configuration. This is difficult when each individual subsystem model can be arbitrarily complex. By restricting an

optimization problem to have a certain mathematical structure, significantly more effective and tractable solution

techniques can be used. Geometric programming, one such technique, guarantees finding a globally optimal solution.

Although it has been shown that geometric programming can be used to solve some aircraft design problems, the

required formulation can prove too restrictive for certain relationships. Signomial programming is a relaxation of

geometric programming that offers enhanced expressiveness. Although they do not guarantee global optimality,

solution methods for signomial programs are disciplined and effective. In this work, signomial programming models

are proposed for optimal sizing of thewing, tail, fuselage, and landing gear of a commercial aircraft. Thesemodels are

combined together to produce a system-level optimization model. Signomial programming’s formulation allows it to

handle somekey constraints in aircraft design, and therefore an improvement in fidelity over geometricprogramming

models is achieved. A primary contribution of this work is to demonstrate signomial programming as a viable tool for

multidisciplinary aircraft design optimization.

I. Introduction

G EOMETRIC programming (GP)¶ is an optimization technique

that combines the expressiveness of nonlinear objectives and

constraints with the mathematical rigor of convex optimization to

provide a powerful approach to solving multidisciplinary aircraft

design optimization problems. For problems that can be formulated

as geometric programs (GPs), modern solvers guarantee globally

optimal solutions, are extremely fast, and return local sensitivities at

no extra cost, thanks to the principle of Lagrange duality. In previous

work, Hoburg and Abbeel [1] showed that many models common to

aircraft design can be represented directly inGP-compatible form and

that there are a number of innovative ways of dealing with models

that cannot, including (but not limited to) changes of variables and

GP-compatible fitting methods. Finally, it is also shown that such

problems can be solved efficiently using a standard laptop computer.

The aircraft design problem solved in [1] includes models for steady

level flight, range, takeoff, landing, a sprint flight condition, actuator

disk propulsive efficiency, simple drag and weight buildups, and a

beam wing box structure.

Because of these promising initial results, there is a strong desire

to extend the use of GP for aircraft design, both in breadth, by

consideringmore aspects of the aircraft design problem, and in depth,

by increasing the fidelity of the models used. Unfortunately, the

restrictions of the GP formulation mean that not all aircraft design

constraints can be readily implemented as part of a GP. A
generalization of GP called signomial programming (SP) helps to
address this byallowing constraintswith less restrictive formulations [2].
A relatively small relaxation in the restriction on problem formulation
means that SP can handle a significantly more-general set of problems
thanGP, but this comes at a cost; SPdoes not boast the sameguarantee of
global optimality as GP. Despite this, solution methods remain
disciplined and effective by leveraging a difference of convex program
formulation for SP.
Signomial programming is important for aircraft design because it

allows a modeler to leverage the speed and reliability of GP on models
that are notGP-compatible, and it enables increasing fidelitywhere it is
not possible to maintain GP-compatibility. From the authors’ limited
experience, only a small proportion of the constraints in aircraft design
models require signomials, if any. In many cases, however, omitting
these constraints would mean failing to capture an important design
consideration. Sometimes, the constraint in question is the only
constraint that keeps one or more design variables meaningfully
bounded. Thus, optimization quality and robustness are sacrificed in
exchange for obtainingdual feasibility and/or highermodel fidelity. It is
important to stress that the purposeof thiswork is not touseSP liberally
but rather to use it in a targeted and precise manner, where themarginal
cost of introducing a signomial constraint can be justified by an
adequate increase in model fidelity or accuracy. Because they result in
convex restrictions on the feasible set, monomial and posynomial
constraints are still viewed as thepreferred approachwherever possible.
There exists extensive research in multidisciplinary design

optimization (MDO) methods for conceptual aircraft design [3–7].
Of the many different frameworks in the literature, TASOPT [5] is
particularly relevant to the present work because of its use of physics-
based models, medium-fidelity analytical models, and multidisci-
plinary considerations of aircraft subsystems. Common challenges
faced in multidisciplinary design optimization include models that
are too computationally expensive to be practical for a designer, final
results that are sensitive to the choice of baseline design, evaluations
of black box functions that offer optimizers little-to-no visibility of
exploitablemathematical structure, and coupling of different analysis
tools that require delicate wiring between models and generally
another layer of complexity and opacity.
In the following sections, SPmodels are presented for design of the

wing, vertical tail, horizontal tail, fuselage, and landing gear of a
conventional tube-and-wing commercial aircraft. These models can
be used to determine optimal values for, among other things, the
preliminary geometry, positioning, and weight of each subsystem.
They are compilations of constraints, some developed by the authors
and others obtained from a variety of references. As a result, the
relationships are not necessary original, but their adaptation to
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signomial programming is. Each model is readily extensible,
meaning that constraints can be added and made more sophisticated
with ease.
Each section of this paper describes a model, beginning with the

key assumptions regarding the model, followed by the enumeration
and description of the constraints. The intention is to demonstrate the
wide range of aircraft design constraints that fit naturally into the
signomial programming formulation.
The models are combined together in a full-configuration system-

level model that captures the highly coupled nature of aircraft design.
This model is solved using estimates for fixed variables based on a
reference aircraft, the Boeing 737-800. Although the emphasis of this
work is not on the solution, it does allow us to verify that the full-
systemmodel has a solution that is not only feasible but also credible.
To the authors’ best knowledge, this is the first published work on SP
applied to aircraft design.
Before presenting these models, we begin with brief introductions

to both geometric and signomial programming.

A. Introduction to Geometric Programming

First introduced in 1967 by Duffin et al. [8], a GP is a specific type
of constrained, nonlinear optimization problem that becomes convex
after a logarithmic change of variables. Modern GP solvers employ
primal-dual interior point methods [9] and are extremely fast. A
typical sparseGPwith tens of thousands of decisionvariables and one
million constraints can be solved on a desktop computer in minutes
[2]. Furthermore, these solvers do not require an initial guess and
guarantee convergence to a global optimum, whenever a feasible
solution exists. Being able to find optimal solutions without an initial
guess makes the technique particularly useful for conceptual aircraft
design, where it is important that results are not biased by
preconceptions of how an optimal aircraft should look.
These impressive properties are possible because GPs represent a

restricted subset of nonlinear optimization problems. In particular,
the objective and constraints can only be composed of monomial and
posynomial functions.
A monomial is a function of the form:

m�x� � c
Yn
j�1

x
aj
j (1)

where aj ∈ R, c ∈ R��, and xj ∈ R��. For instance, the familiar
expression for lift, �1∕2�ρV2CLS, is a monomial with
x � �ρ; V; CL; S�, c � 1∕2, and a � �1; 2; 1; 1�.
A posynomial is a function of the form:

p�x� �
XK
k�1

ck
Yn
j�1

x
ajk
j (2)

where ak ∈ Rn, ck ∈ R��, and xj ∈ R��. Thus, a posynomial is
simply a sum of monomial terms, and all monomials are also
posynomials (with just one term).
In plain English, a GPminimizes a posynomial objective function,

subject to monomial equality constraints and posynomial inequality
constraints. The standard form of a geometric program in
mathematical notation is as follows:

minimize p0�x�
subject to pj�x� ≤ 1; j � 1; : : : ; np;

mk�x� � 1; k � 1; : : : ; nm (3)

where pi are posynomial (or monomial) functions,mi are monomial
functions, and x ∈ Rn�� are the decision variables.
Although this form may appear restrictive, surprisingly many

physical constraints and objectives can be expressed in the necessary
form [1]. Many relationships that cannot be formulated exactly as
posynomials can be approximated closely, using methods for fitting
GP-compatible models to data [10].

B. Introduction to Signomial Programming

Geometric programming is a powerful tool, with strong

guarantees. As discussed previously however, the formulation can

prove restrictive. Although changes of variable present an elegant
way of circumventing some formulation obstacles, there may not

always exist a suitable variable change. In particular, the restriction

c > 0 in the definition of a posynomial can be a prohibitive obstacle
for a modeler. There are many models where being able to use

negative coefficients is necessary to accurately capture a relationship,
such as when trying to minimize the difference between two

quantities. An example of this is Lock’s empirical relationship for

wave drag [11] that is commonly used in conjunction with the Korn
equation to estimate the drag on a transonic wing:

CDwave
≥ 20�M −Mcrit�4 (4)

A signomial is a function with the same form as a posynomial:

s�x� �
XK
k�1

ck
Yn
j�1

x
ajk
j (5)

except that the coefficients ck ∈ R can now be any real number. In

particular, they can be nonpositive. A signomial program is a
generalization of a geometric program that allows signomial

constraints. The “difference of convex” formulation of a signomial

program also permits the objective function to be a ratio of
posynomials and is given by:

minimize
p0�x�
q0�x�

subject to si�x� ≤ 0; i � 1; : : : ; ns;

pj�x� ≤ 1; j � 1; : : : ; np;

mk�x� � 1; k � 1; : : : ; nm (6)

Although Eq. (6) is standard form for a signomial program, the
majority of signomial constraints presented in thiswork take the form

p1�x� ≤ p2�x� or s�x� ≤ p�x� because these are often more intuitive

and both can easily be transformed into the standard form s�x� ≤ 0.
This follows the geometric programming convention of using

posynomial inequality constraints of the form p�x� ≤ m�x� and

monomial equality constraints of the form m1�x� � m2�x� [2].
Sometimes there is both upward and downward (optimization)

pressure on a variable, and it is not always possible to know a priori

which will dominate. In these cases, we can use signomial equality
constraints of the form s�x� � 0. However, as discussed in the next

section, these constraints are generally less desirable than signomial
inequality constraints from an optimization perspective.We therefore

use them as sparingly as possible in this work.
An important point is that adding just one signomial constraint to a

geometric program with arbitrarily many posynomial constraints

changes the geometric program to a signomial program.
The bad news is that the increased expressiveness of signomial

programming comes at a price; we can no longer guarantee a global

optimum because, unlike with GP, the log transformation of a

signomial program is not a convex optimization problem. The good
news is that there is a disciplined method for solving signomial

programs (SPs).

C. Signomial Programming Solution Methods

There are a number of different methods for solving SPs. The

majority of heuristics involve finding a local GP approximation to

the SP about an initial guess x0, solving this GP, and then repeating
the process, using the previous iteration’s optimal solution as the

point about which to take the next GP approximation. The process is
repeated until the solution converges [2,12]. The GP approximation

is obtained by approximating each signomial constraint with a

posynomial constraint.
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The first step, if it has not already been done, is to express each

signomial, si�x�, as a difference of posynomials,pi�x� and qi�x�, and
rearrange them to the form of a posynomial less than or equal to

another posynomial:

si�x� ≤ 0 (7)

pi�x� − qi�x� ≤ 0 (8)

pi�x� ≤ qi�x� (9)

Although Eq. (9) is not a GP-compatible constraint, it can bemade

into a GP constraint if posynomial qi�x� is replaced with its local

monomial approximation q̂i�x; x0�, because a posynomial divided by

a monomial is also a posynomial:

pi�x� ≤ q̂i�x; x0� (10)

pi�x�
q̂i�x; x0�

≤ 1 (11)

Finding a monomial approximation to a posynomial is analogous

to finding a local affine approximation to a nonlinear function in log

space. The best-possible local monomial approximation to a

posynomial q�x� at the point x0 [2] is given by:

q̂i�x�
��
x0
� qi�x0�

YN
n�1

�
xn
x0n

�
an

(12)

where xn are the elements of x and

an � x0n
qi�x0�

∂qi
∂xn

(13)

Signomial programming, using formulation (6), is an example of

difference of convex programming because the logarithmically

transformed problem can be expressed as:

minimize f0�x� − g0�x�
subject to fi�x� − gi�x� ≤ 0; i � 1; : : : ; m (14)

where fi and gi are convex. This means that, for the convex (GP)

approximation f̂�x� of the nonconvex (SP) function f�x� − g�x�,

f̂�x� ≥ f�x� ∀ x (15)

Because of this, the true feasible set contains the feasible set of the

convexified problem, and there is no need for a trust region [13],

meaning that there is no need to tune solver parameters for controlling

initial trust region sizes and/or update rules.
Signomial equality constraints are solved by creating local

monomial approximations to the equality constraint. Unfortunately,

the feasible set of the monomial approximation is not a subset of the

original feasible set. Therefore, signomial equality constraints may

require a trust region, making them the least desirable type of

constraint. However, the signomial equality constraints in this work

did not require a trust region, and thus parameter tuning was not

necessary. For additional details on how signomial equalities are

implemented, see Opgenoord et al. [14].
The models solved in this paper employ a relaxed constants

penalty function heuristic. This heuristic is a minor variation on the

penalty convex–concave procedure described by Lipp and Boyd

[12]. The heuristic employs the previously discussed iterative

process; however, every constant in the model, ci, is paired with a

relaxed constant, ~ci. Slack variables, si, are introduced to facilitate the
variation of the relaxed constants in accordance with Eqs. (16–18):

si ≥ 1 (16)

ci ≥
~ci
si

(17)

ci ≤ ~cisi (18)

The original objective function for each individual GP, f�x�, is
modified to give a new objective function g�x� that heavily penalizes
slack variables greater than 1:

g�x� �
�Y

i
si

�
20

f�x� (19)

The large penalty on slack in the objective function ensures that
slack variables equal 1 when the SP converges. In other words, when
the relaxed SP converges it is identical to the original model. The
introduction of slack variables is advantageous because it allows
early GP iterations to move through regions that are infeasible in the
original model, reducing solution time while increasing model
stability. It was observed in practice that the relaxed constants penalty
method used in this paper was faster than the penalty convex concave
procedure detailed in [12] because it involved introducing fewer
additional variables, allowing the model to build faster.
The models presented in this work are composed and solved using

GPkit [15], a Python package for defining andmanipulating geometric
programming models, with MOSEK [16] as the backend solver.

II. System-Level Model

The objective of the optimization problem presented in this work is
tominimize fuel consumption, or equivalently fuel weightWfuel, using
an adaptation of the Breguet range formulation introduced in [1]. The
purpose of the system-levelmodel is threefold; it enforces system-level
performance constraints such as required range and minimum cruise
speed, it encodes weight and drag buildups, and it constrains system-
level properties such as the aircraft’s c.g. and moment of inertia. In
doing these things, it also couples the subsystem models.

A. Model Assumptions

The model presented in this work is a set of constraints that
describe the performance and design of a conventional-configuration
narrowbody aircraft, with a simple cruise-only mission profile.
A more sophisticated mission profile is left for future work.

B. Model Description

Tables 1 and 2 list the free and fixed variables used in the system-
level constraints.

1. Flight Performance

The Breguet range formulation is discretized over multiple cruise
segments to improve accuracy as the aircraft weight changes,
meaning every constraint is applied during each of the n � 1 : : : N
flight segments. For readability, the n subscripts are not used in the
remainder of the manuscript, but still apply.
The sum of the cruise segment rangesmust be greater than or equal

to the required range of the aircraft. This is enforced using a signomial
constraint:

XN
n�1

Rn ≥ Rreq (20)

A series of N − 1 monomial equalities constrain all of the flight
segments to be of equal length, which is helpful for applying the
model to more sophisticated mission profiles.

R1 � R2 � : : : � RN (21)
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The Breguet range relationship is enforced with GP-compatible

constraints, using a dummy variable, as done in [1].

Wfueln
≥
�
zbren �

z2bren
2

� z3bren
6

�
Wendn

(22)

zbren ≥ cTtn
Dn

Wavgn

(23)

tn � Rn

V∞n

(24)

�
L

D

�
n

� Wavgn

Dn

(25)

Dn � nengTn (26)

The average weight during a cruise segment is given by the
geometric mean of the segment's start and end weights, with the
addition of buoyancy weight. The geometric mean is used because it
improves the model's stability.

Wavgn
≥

�������������������������
Wstartn

Wendn

p �Wbuoyn
(27)

The aircraft weight at the start of cruise is assumed to equal its
maximumweight, which comprises dry weight, payload weight, and
fuel weight, including a reserve requirement. The weight lost during
each segment is equal to the weight of the fuel burned during that
segment. These relationships are enforced using a series ofmonomial
and posynomial constraints:

Wstart0
� Wmax (28)

Wstartn
≥ Wendn

�Wfueln
(29)

Wstartn�1
� Wendn

(30)

WendN
≥ Wdry �Wpay � ffuelresWfuelprim

(31)

Wmax ≥ Wdry �Wpay �Wfuelprim
�1� ffuelres � (32)

Wfuelprim
≥
XN
n�1

Wfueln
(33)

The dry weight and drag of the aircraft are constrained using
simple buildups of each component’s weight and drag:

Wdry ≥ Wwing �Wfuse �Wvt �Wht �W lg � nengWeng �Wmisc

(34)

Dn ≥ Dwingn
�Dfusen

�Dvtn
�Dhtn

(35)

Mach number is constrained to be greater than a user-specified
minimum value, to represent, for example, an operational
requirement:

Table 2 Fixed variables in the system-level
aircraft model and/or shared by submodels

Constants Units Description

CLw;max
—— Maximum lift coefficient, wing

Mmin —— Minimum Mach number
Rreq n mile Required total range
T N Thrust per engine in cruise
TTO N Thrust per engine at takeoff
Wapu N APU weight
Weng N Engine weight
ρTO kg∕m3 Takeoff density
cT 1∕h Thrust specific fuel consumption
ffuelres —— Fuel reserve fraction
g m∕s2 Gravitational acceleration
lr —— Maximum runway length
neng —— Number of engines
yeng m Engine moment arm

Table 1 Free variables in the system-level aircraft model and/or
shared by submodels

Free variables Units Description

CD —— Drag coefficient
D N Total aircraft drag (cruise)
Dfuse N Fuselage drag
Dht N Horizontal tail drag
Dvt N Vertical tail drag
Dwing N Wing drag
Izfuse kg ⋅m2 Fuselage moment of inertia
Iztail kg ⋅m2 Tail moment of inertia
Izwing kg ⋅m2 Wing moment of inertia
Iz kg ⋅m2 Total aircraft moment of inertia
L∕D —— Lift/drag ratio
M —— Cruise Mach number
R n mile Segment range
Sw m2 Wing reference area
VTO m∕s Takeoff velocity
V∞ m∕s Cruise velocity
Wavg lbf Average aircraft weight during flight segment
Wbuoy lbf Buoyancy weight
Wcone lbf Cone weight
Wdry lbf Aircraft dry weight
Wend lbf Aircraft weight at end-of-flight segment
Wfuelprim

lbf Primary fuel weight (excludes reserves)
Wfuelwing

lbf Maximum fuel weight carried in wing
Wfuel lbf Weight of fuel burned per flight segment
Wfuse lbf Fuselage weight
Whpesys lbf Power system weight
Wht lbf Horizontal tail weight
Wlg lbf Landing-gear weight
Wmax lbf Maximum aircraft weight
Wmg lbf Main landing-gear weight
Wmisc lbf Miscellaneous system weight
Wng lbf Nose landing-gear weight
Wpay lbf Payload weight
Wstart lbf Aircraft weight at start of flight segment
Wvt lbf Vertical tail weight
Wwing lbf Wing weight
Δxacw m Wing aerodynamic center shift
λw —— Wing taper ratio
ξ —— Takeoff parameter
a m∕s Speed of sound
bw m Wingspan
crootw m Wing root chord
ffuel —— Percent fuel remaining
lfuse m Fuselage length
lvt m Vertical tail moment arm
t min Flight time
xCGht

m x location of horizontal tail c.g.
xCGlg

m x location of landing-gear c.g.
xCGmisc

m x location of miscellaneous systems c.g.
xCGvt

m x location of vertical tail c.g.
xCG m x location of c.g.
xTO m Takeoff distance
xb m Wing box forward bulkhead location
xhpesys m Power systems centroid
xmg m Main landing-gear centroid
xng m Nose landing-gear centroid
xwing m Wing centroid
y —— Takeoff parameter
zbre —— Breguet parameter
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M � V∞

a
(36)

M ≥ Mmin (37)

The takeoff model is taken directly from [1]. An additional

constraint on takeoff velocity is added to ensure adequate margin

above stall speed [17]:

xTO ≤ lr (38)

1� y ≤ 2
gxTOTTO

V2
TOWmax

(39)

1 ≥ 0.0464
ξ2.7

y2.9
� 1.044

ξ0.3

y0.049
(40)

ξ ≥
1

2

ρTOV
2
TOSwCD

TTO

(41)

VTO � 1.2

���������������������������
2Wmax

CLw;max
SwρTO

s
(42)

Atmospheric pressure, density, temperature, and speed of sound

are constrained using the atmosphere model described in [18].

Dynamic viscosity is constrained using the viscosity model

developed in [19], which is based off the Sutherland viscosity

model [20].

2. System-Level Properties

The constraint for the aircraft c.g. is GP-compatible and is applied

for each flight segment. The fuselage and payload weights are

assumed to be evenly distributed through the length of the fuselage,

and thewingweight acts directly at its area centroid, xwing � Δxacw . It
is assumed that the fuel weight shifts in proportion to the remaining

fuel fraction ffuel and that a reserve fuel fraction ffuelres remains in the

wing. The wing box forward bulkhead location xb is used as a

surrogate variable for engine c.g.:

WendxCGn
≥ Wwing�xwing � Δxacw�
�Wfuelprim

�
ffueln � ffuelres

��
xwing � Δxacwffueln

�
� 1

2
�Wfuse �Wpay�lfuse �WhtxCGht

�WvtxCGvt

� nengWengxb �W lgxCGlg
�WmiscxCGmisc

(43)

ffueln ≥
P

n
n�1 Wfueln

Wfuelprim

(44)

The landing-gear c.g. is constrained by the moment of each set of

landing gear about the nose of the aircraft:

WlgxCGlg
≥ Wmgxmg �Wngxng (45)

The miscellaneous equipment c.g. includes only power systems in

the current model but is defined to allow for refinements in c.g.

modeling in future work:

WmiscxCGmisc
≥ Whpesysxhpesys (46)

The aircraft’s moment of inertia is the sum of the moments of

inertia of its major components:

Iz ≥ Izwing � Izfuse � Iztail (47)

The wing moment of inertia model includes the moment of inertia

of the fuel systems and engines. It assumes that the wing and fuel

weight are evenly distributed on the planform of the wing. This is an

overestimate of the wing moment of inertia with full fuel tanks:

Izwing ≥
nengWengy

2
eng

g
�

�
Wfuelwing

�Wwing

g

�
b3wcrootw
16Sw

�
λw � 1

3

�
(48)

The fuselage moment of inertia includes the payload moment of

inertia. It is assumed that payload and fuselage weight are evenly

distributed along the length of the fuselage. The wing root quarter-

chord location acts as a surrogate for the c.g. of the aircraft:

Izfuse ≥
�
Wfuse �Wpay

g

��
x3wing � l3vt

3lfuse

�
(49)

The moment of inertia of the tail is constrained by treating the tail

as a point mass:

Iztail ≥
�
Wapu �Wvt �Wht

g

�
l2vt (50)

III. Wing Model

The overarching purpose of an aircraft wing is to generate

sufficient lift such that the aircraft can take off, climb, cruise, descend,

and land safely. Typically, thewings also carry fuel tanks and support

the engines. Unfortunately, wings are heavy and produced drag. The

purpose of this model is to capture all of these considerations.

A. Model Assumptions

The wing model assumes a continuous-taper, low-wing

configuration with a modern transonic airfoil. It does not currently

consider wing twist or wing dihedral. It also does not consider roll or

yaw stability.

B. Model Description

The wing model has 52 free variables and 49 constraints. Tables 3

and 4 list the model’s free and fixed variables, respectively.

1. Wing Geometry

Before considering a wing’s performance, the variables that

prescribe its geometry must be appropriately constrained. The

variables that define the wing geometry are illustrated in Fig. 1,

using an adaptation of a figure from [21].
The relationship between reference area, span, and mean

geometric chord is enforced using a constraint that assumes a

trapezoidal planform. This constraint is implemented as a signomial

equality constraint because there is both upward and downward

(optimization) pressure on the reference area, and it is not possible to

know a priori which will dominate:

Sw � bw
crootw � ctipw

2
(51)

The mean aerodynamic chord relationship for a trapezoidal wing

can be written as a posynomial constraint, and its spanwise location

can be written as a monomial equality constraint. These constraints

make use of dummyvariablespw andqw, introduced by the structural
model, as follows:

�cw ≥
2

3

�
1� λw � λ2w

qw

�
crootw (52)
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y �cw � bwqw
3pw

(53)

The wing taper ratio is defined by a monomial equality constraint.

It is necessary to lower bound taper to avoid an unacceptably small

Reynolds number at the wing tip [22]. For the purpose of this work,

the taper is lower-bounded using the taper ratio of the reference

aircraft’s wing [23]:

λw � ctipw
crootw

(54)

λw ≥ λwmin
(55)

Finally, a maximum span constraint can be imposed to reflect, for

example, a gate size constraint:

bw ≤ bw;max (56)

2. Wing Lift

Total lift is constrained to be greater than the weight of the aircraft

plus the downforce from the horizontal tail. The constant fLtotal∕wing
is

greater than 1 and used to account for fuselage lift:

Ltotal ≥ Wavg � Lht (57)

Ltotal � fLtotal∕wing
Lw (58)

The standard equation for the lift of a wing is a natural monomial

equality constraint:

Lw � 1

2
ρ∞V

2
∞SwCLw

(59)

However, this assumes a continuous unobstructed wing planform.

Correcting for lift loss at the fuselage and at the wing tips gives the

adjusted Eq. (60), which can be rearranged into the posynomial

constraint [Eq. (61)]:

Lw � 1

2
ρ∞V

2
∞SwCLw

− ΔLo − 2ΔLt (60)

1

2
ρ∞V

2
∞SwCLw

≥ Lw � ΔLo � 2ΔLt (61)

The lift corrections [5] are given as monomial equality constraints:

ΔLo � ηofLo

bw
2
po (62)

ΔLt � fLt
pocrootwλ

2
w (63)

Table 3 Free variables in the wing model

Free variables Units Description

— — Wing aspect ratio
CDw

— — Drag coefficient, wing
CDiw

— — Wing induced drag coefficient
CDpw

— — Wing parasitic drag coefficient
CLw

— — Lift coefficient, wing
CLα;w

— — Lift–curve slope, wing
Dw N Wing drag
Lht N Horizontal tail downforce
Lhtmax

N Maximum horizontal tail downforce
Ltotal N Total lift generated by aircraft
Lw N Wing lift
Lwmax

m Maximum lift generated by wing
M — — Cruise Mach number
Rew — — Cruise Reynolds number (wing)
Sw m2 Wing area
V∞ m∕s Freestream velocity
Vfuel;max m3 Available fuel volume
WS N∕m2 Wing loading
Wavg lbf Average aircraft weight during flight segment
Wfueltotal

lbf Total fuel weight
Wmax lbf Maximum aircraft weight
Wstructw

lbf Wing box weight
Wwing lbf Wing weight
ΔLo N Center wing lift loss
ΔLt N Wing-tip lift loss
Δxacw N Wing aerodynamic center shift
αw — — Wing angle of attack
�cw m Mean aerodynamic chord (wing)
ηo — — Center wingspan coefficient
λw — — Wing taper ratio
μ N ⋅ s∕m2 Dynamic viscosity
ρ∞ kg∕m3 Freestream density
τw — — Wing thickness/chord ratio
bw m Wingspan
crootw m Wing root chord
ctipw m Wing-tip chord
e — — Oswald efficiency factor
f�λw� — — Empirical efficiency function of taper
pw — — Dummy variable (1� 2λw)
po N∕m Center section theoretical wing loading
qw — — Dummy variable (1� λw)
y �cw m Spanwise location of mean aerodynamic chord

Wing box

Icap — — Nondimensional spar cap area moment of inertia
Mr N Root moment per root chord
Wcap lbf Weight of spar caps
Wfuelwing

lbf Maximum fuel weight carried in wing
Wweb lbf Weight of shear web
ν — — Dummy variable ��t2 � t� 1�∕�t� 1�2�
tcap — — Nondimensional spar cap thickness
tweb — — Nondimensional shear web thickness

Table 4 Fixed variables in the wing model

Constants Units Description

WSmax
N∕m2 Maximum wing loading

Weng N Engine weight
αw;max —— Maximum angle of attack
cos�Λ� —— Cosine of quarter-chord sweep angle
ηw —— Lift efficiency
λwmin

—— Minimum wing taper ratio
ρfuel kg∕m3 Density of fuel
tan�Λ� —— Tangent of quarter-chord sweep angle
bw;max m Maximum allowed wingspan
fLo

—— Center wing lift reduction coefficient
fLtotal∕wing

—— Total lift divided by wing lift
fLt

—— Wing-tip lift reduction coefficient
faileron —— Aileron added weight fraction
fflap —— Flap added weight fraction
ffuel;usable —— Usability factor of maximum fuel volume
ffuel;wing —— Fraction of total fuel stored in wing
flete —— Lete added weight fraction
fribs —— Wing rib added weight fraction
fslat —— Slat added weight fraction
fspoiler —— Spoiler added weight fraction
ftip —— Induced drag reduction from wing-tip devices
fwatt —— Wing attachment hardware added weight fraction
g m∕s2 Gravitational acceleration
yeng min Engine moment arm

Wing box

Nlift —— Wing loading multiplier
ρcap kg∕m3 Density of spar cap material
ρweb kg∕m3 Density of shear web material
σmax;shear Pa Allowable shear stress
σmax Pa Allowable tensile stress
rh —— Fractional wing thickness at spar web
rw∕c —— Wing box width-to-chord ratio
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The lift coefficient of the wing goes linearly with the angle of

attack, which is limited by a maximum angle of attack due to stall:

CLw
� CLα;w

αw (64)

αw ≤ αw;max (65)

The DATCOM formula is an analytic function for estimating the

lift–curve slope of awing or tail, based on empirical results [22]. This

relationship is used as a signomial equality constraint, after some

algebraic manipulation.

Maximum wing lift is constrained using an assumed load factor

Nlift:

fLtotal∕wing
Lwmax

≥ NliftWmax � Lhtmax
(68)

Finally, wing loading is constrained to be less than a user-specified

maximum:

WS � 1

2
ρ∞CLw

V2
∞ (69)

WS ≤ WSmax
(70)

3. Wing Weight

Wing weight is constrained to be greater than the wing structural

weight plus a series of fractional weights to account for wing ribs and

control surfaces:

Wwing ≥ Wstructw
�1� fflap � fslat � faileron � flete � fribs

� fspoiler � fwatt� (71)

Wing structural weight is constrained using an adaptation of the

structural model from Hoburg and Abbeel [1], which comprises 12

monomial and posynomial constraints:

Wstructw
≥ �Wcap �Wweb� (72)

(73)cap
cap cap

(74)web
web web

ν3.94 ≥ 0.14p0.56
w � 0.86

p2.4
w

(75)

pw ≥ 1� 2λw (76)

2qw ≥ 1� pw (77)

0.922

2
τ2rw∕c tcaprw∕c ≥ 0.92τrw∕c t

2
caprw∕c � Icap (78)

(79)
maxcap

lift

(80)

(81)

τw ≤ 0.14 (82)

The variables used to prescribe the wing box’s cross-sectional

geometry are illustrated in Fig. 2.
The original root bending moment constraint,

max (83)

is replaced with a more-sophisticated signomial constraint that

considers the load relief effect due to theweight of the engine and the

fuel tanks. To derive the constraint, the lift per unit span of wing is

assumed to be proportional to the local chord, and thewing planform

area is partitioned into an untapered (rectangular) area, Arect, and a

fully tapered (triangular) area, Atri:

Arect � ctipwbw (84)

Atri �
1

2
�1 − λw�crootwbw (85)

Fig. 2 Geometric variables of the wing box cross section (adapted
from [5]).

Fig. 1 Geometric variables** of the wing model.

**Geometric in the sense that they prescribe geometry, not in the sense of
geometric programming, which derives its name from the same etymology as
the geometric mean.
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The wing area component loads are treated as point loads to
determine the equivalent wing root moment:

Mrcrootw ≥
�
Lwmax

− Nlift

�
Wwing � ffuel;wingWfueltotal

�	
·

�
1

6
Atri �

1

4
Arect

�
bw
Sw

− NliftWengyeng (86)

This constraint can be further simplified to remove the need for
intermediary variables Atri and Arect because

1

6
Atri �

1

4
Arect �

1

12

�
crootw − ctipw

	
bw � 1

4
ctipwbw (87)

� bw
12

�
crootw � 2ctipw

	
(88)

Substituting Eq. (88) into constraint (89) yields the followingwing
root moment constraint:

Mrcrootw ≥
�
Lwmax

− Nlift

�
Wwing � ffuel;wingWfueltotal

		

·

�
b2w
12Sw

�
crootw � 2ctipw

��
− NliftWengyeng (89)

Note that this provides a conservative estimate for the root moment
because it assumes that the lift per unit area is constant throughout the
wing, whereas in reality the lift per unit area diminishes toward the
wing tips.

4. Wing Drag

Wing drag is captured by five monomial and posynomial
constraints. The parasitic drag coefficient is constrained using a
softmax affine fit of XFOIL [24] simulation data for the TASOPT [5]
C-series airfoils, which are representative of modern transonic
airfoils [5]. The fit, which considers wing thickness, lift coefficient,
Reynolds number, and Mach number, was developed with GPfit
[10,25] and has an rms error of approximately 5%. Constraint (97) is
an adaption of the standard definition of the induced drag coefficient
[17], with an adjustment factor for wing-tip devices:

Dw � 1

2
ρ∞V

2
∞SwCDw

(90)

CDw
≥ CDpw

� CDiw
(91)

C1.65
Dpw

≥ 1.61

�
Rew
1000

�−0.550
�τw�1.29�M cos�Λ��3.04C1.78

Lw

� 0.0466

�
Rew
1000

�−0.389
�τw�0.784�M cos�Λ��−0.340C0.951

Lw

� 191

�
Rew
1000

�−0.219
�τw�3.95�M cos�Λ��19.3C1.15

Lw

� 2.82e − 12

�
Rew
1000

�
1.18

�τw�−1.76�M cos�Λ��0.105C−1.44
Lw

(92)

Rew � ρ∞V∞ �cw
μ

(93)

tip (94)

The Oswald efficiency is constrained by a relationship from [26],
in which the authors fit a polynomial function to empirical data.
Given that all polynomials are signomials, this can easily be used in
the SP framework:

(95)

f�λw� ≥ 0.0524λ4w − 0.15λ3w � 0.1659λ2w − 0.0706λw � 0.0119

(96)

The Oswald efficiency is plotted as a function of taper ratio, as
imposed by this pair of constraints, in Fig. 3.

5. Wing Aerodynamic Center

The wing’s true aerodynamic center and c.g. are shifted back with
respect to its root quarter-chord, due to its sweep. Assuming that the
lift per unit area is constant, the magnitude of this shift can be
calculated by integrating the product of the local quarter chord offset,
δx�y�, and local chord, c�y�, over the wing half-span:

Δxacw � 2

S

Z
b∕2

0

c�y�δx�y� dy (97)

c�y� �
�
1 − �1 − λw�

2y

bw

�
crootw (98)

δx�y� � y tan�Λ� (99)

By substituting Eqs. (98) and (99) into Eq. (97), expanding out the
integral, and relaxing the equality, Δxacw can be constrained as
follows:

rootac (100)

6. Fuel Volume

Fuel tanks are typically located inside the wing box. Using the
geometry of a TASOPT-optimized 737-800 [5], a constraint on
the maximum fuel volume in the wing was developed. For a wing of
the samemean aerodynamic chord, thickness, and span as a TASOPT
737-800, themaximum available fuel volumes in thewingwill match
exactly. To allow for the possibility of auxiliary tanks in the

Fig. 3 Empirical relationship for Oswald efficiency as a function of

taper for a wing with .
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horizontal tail or fuselage, the user-specified value ffuel;usable is
introduced:

Vfuel;max ≤ 0.303 �c2wbwτw (101)

Wfuelwing
≤ ρfuelVfuel;maxg (102)

Wfuelwing
≥
ffuel;wingWfueltotal

ffuel;usable
(103)

IV. Vertical Tail Model

At a conceptual design level, the purpose of an aircraft’s vertical
tail is twofold. First, it must provide stability in yaw. Second, it must
provide adequate yaw control authority in critical flight conditions.
For a multi-engine aircraft, the critical flight condition is typically an
engine failure at low speeds. The vertical tail must be capable of
providing sufficient side force in this case [27]. The vertical tail must
also provide adequate yaw rate acceleration during landing flare in
crosswind conditions. The design of the vertical tail is therefore
coupled to the size of the fuselage, the position of the engines, and the
aircraft’s moment of inertia.

A. Model Assumptions

The high-level assumptions for this model are that the horizontal
tail is mounted on the fuselage, so as to not require a reinforced
vertical tail structure, and that the aircraft has two engines.

B. Model Description

The vertical tail model has 42 free variables and 31 constraints.
Tables 5 and 6 list the free and fixed variables that appear in
constraints that are unique to the vertical tail model.

1. Vertical Tail Geometry and Structure

The variables that define geometry are illustrated in Fig. 4. The
moment arm of the vertical tail is the distance from the aircraft c.g. to
the aerodynamic center of the vertical tail, which is assumed to be at

the quarter-chord. The moment arm is therefore upper-bounded by

the distance from the c.g. to the leading edge of the tail at the root, the

height of the mean aerodynamic chord above the fuselage, the sweep

angle, and the mean aerodynamic chord:

lvt ≤ Δxleadvt � z �cvt tan�Λvt� � 0.25 �cvt (104)

The x coordinates of the leading and trailing edge at the root are

related by the root chord. The tail trailing edge is upper-bounded by

imposing a constraint that the tail root cannot extend beyond the end

of the fuselage. Together, these constraints put an upper bound on the

moment arm of the tail based on the length of the fuselage:

Δxtrailvt ≥ Δxleadvt � crootvt (105)

lfuse ≥ xCG � Δxtrailvt (106)

The location of the vertical tail c.g. is also constrained

approximately using simple geometry:

xCGvt
≥ xCG � 1

2
�Δxleadvt � Δxtrailvt� (107)

Table 5 Free variables from constraints that are unique to the
vertical tail model (VT, vertical tail)

Free variables Units Description

vt — — Vertical tail aspect ratio
CDpvt

— — Viscous drag coefficient
CLvt;EO

— — Vertical tail lift coefficient during engine out
CLvt;landing

— — Vertical tail lift coefficient during landing
Dvt N Vertical tail viscous drag, cruise
Dwm N Engine out windmill drag
Iz kg∕m2 Total aircraft moment of inertia
Lvt;EO N Vertical tail lift in engine out
Lvtmax

N Maximum load for structural sizing
M — — Cruise Mach number
Revt — — Vertical tail Reynolds number
Svt m2 Vertical tail reference area (half)
V∞ m∕s Freestream velocity
Wvt lbf Vertical tail weight
Δxleadvt m Distance from c.g. to VT leading edge
Δxtrailvt m Distance from c.g. to VT trailing edge
�cvt m Vertical tail mean aerochord
μ N ⋅ s∕m2 Dynamic viscosity
ρ∞ kg∕m3 Freestream density
τvt — — Vertical tail thickness/chord ratio
bvt m Vertical tail half-span
crootvt m Vertical tail root chord
ctipvt m Vertical tail tip chord
lfuse m Length of fuselage
lvt m Vertical tail moment arm
xCGvt

m x-location of vertical tail c.g.
xCG m x-location of aircraft c.g.
z �cvt m Vertical location of mean aerodynamic chord

Table 6 Fixed variables from constraints that are unique to the
vertical tail model

Constants Units Description

Afan m2 Engine reference area
CDwm

— — Windmill drag coefficient
CLvt;max

— — Maximum lift coefficient
TTO N Thrust per engine at takeoff
V1 m∕s Minimum takeoff velocity
Vland m∕s Landing velocity
Vne m∕s Never exceed velocity
ρTO kg∕m3 Air density at takeoff
tan�Λvt� — — Tangent of leading edge sweep (40 deg)
clvt;EO — — Sectional lift force coefficient (engine out)
evt — — Span efficiency of vertical tail
g m∕s2 Gravitational acceleration
_rreq s−2 Maximum required yaw rate acceleration at landing
yeng m Engine moment arm

Fig. 4 Geometric variables of the vertical tail model (adapted from [21]).
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The vertical tail structure is sized by its maximum lift coefficient
and the never-exceed speed:

Lvtmax
� 1

2
ρTOV

2
neSvtCLvt;max

(108)

The remaining geometry and structural constraints were already
introduced in the wing model. Constraints (51–55) are adapted to the
vertical tail model to constrain its geometry, with two minor
modifications. Constraint (51) can be relaxed from a signomial
equality to a signomial inequality constraint, whereas constraint (52)
needs to be implemented as a signomial equality constraint. Thewing
structure model from [1] is also reused; however, given that the
vertical tail only has a half-span, the definitions of bvt, Svt, and Wvt

differ accordingly from those of their wing counterparts.

2. Engine-Out Condition

The first performance constraint specifies that the maximum
moment exerted by the tail must be greater than or equal to the
moment exerted by the engines in an engine-out condition,
exacerbated by thewindmill drag of the engine that is inoperative [5]:

Lvt;EOlvt ≥ Dwmyeng � TTOyeng (109)

The worst-case engine-out condition is likely to occur during
takeoff, when the velocity is lowest but the engine force required to
safely complete takeoff is highest. The force exerted by the vertical
tail in this critical low speed case is constrained by its maximum lift
coefficient, its reference area, and the minimum dynamic pressure.
As a conservative estimate, the V1 speed is used because it is the
minimum speed after which a takeoff can be completed, following a
critical engine failure:

Lvt;EO � 1

2
ρTOV

2
1SvtCLvt;EO

(110)

The wing lift coefficient is constrained by the airfoil sectional lift
coefficient using finite wing theory [28]:

(111)vt

vt

vt
vt vt

Thewindmill drag can, to a first approximation, be lower-bounded
using a drag coefficient and a reference area [5], in this case the area of
the engine fan:

Dwm ≥
1

2
ρTOV

2
1AfanCDwm

(112)

3. Crosswind Landing Condition

The second performance constraint ensures the vertical tail can
provide adequate yaw rate acceleration in a crosswind landing, where
themoment of inertia was constrained at the system level (Sec. II). To
provide a safety margin during cross-wind landing, CLvt;landing

is taken
to be 85% of CLvt;max

:

1

2
ρTOV

2
landSvtlvtCLvt;landing

≥
_rreq
Iz

(113)

4. Vertical Tail Drag

The vertical tail produces drag, regardless of the flight condition.
Neglecting any induced drag, the parasitic drag coefficientCDpvt

is set

by a softmax affine fit of XFOIL [24] data for the symmetric NACA
0008 through 0020 airfoils. The fit considers airfoil thickness, Mach
number, and Reynolds number. It was developed with GPfit [10,25]
and has an rms error of 1.31%:

Dvt ≥
1

2
ρ∞V

2
∞SvtCDpvt

(114)

C1.189
Dpvt

≥ 2.44 × 10−77�Revt�−0.528�τvt�133.8�M�1022.7

� 0.003�Revt�−0.410�τvt�1.22�M�1.55
� 1.967 × 10−4�Revt�0.214�τvt�−0.04�M�−0.14
� 6.590 × 10−50�Revt�−0.498�τvt�1.56�M�−114.6 (115)

Revt �
ρ∞V∞ �cvt

μ
(116)

V. Horizontal Tail Model

At a conceptual design level, the purpose of the horizontal tail is
threefold: to trim the aircraft such that it can fly in steady level flight,
to provide longitudinal stability, and to give the pilot pitch control
authority over a range of flight conditions.

A. Model Assumptions

The horizontal tail model assumes that the horizontal stabilizer is
mounted to the fuselage and nominally produces downforce in cruise.

B. Model Description

The horizontal tail model has 50 free variables and 33 constraints.
Tables 7 and 8 list the free and fixed variables that appear in
constraints that are unique to the horizontal tail model.

1. Horizontal Tail Geometry and Structure

The horizontal tail model employs many of the same geometric
constraints as thewing and vertical tail. More specifically, analogous
versions of constraints (51–55) and constraints (107–110) enforce
planform relationships and constrain the horizontal tail moment arm,
respectively. As with the vertical tail, constraint (52) needs to be
implemented as a signomial equality constraint. The horizontal tail
also reuses the same structural model from [1]. The variables that
define geometry are illustrated in Fig. 5.

Table 7 Free variables from constraints that are unique to
the horizontal tail model (HT, horizontal tail)

Free variables Units Description

CD0ht
—— Horizontal tail parasitic drag coefficient

CLw
—— Wing lift coefficient

CLα;ht0
—— Horizontal tail isolated lift curve slope

CLα;ht
—— Horizontal tail lift curve slope

CLα;w
—— Wing lift curve slope

CLht
—— Horizontal tail lift coefficient

M —— Mach number
Reht —— Horizontal tail Reynolds number
SM —— Stability margin
Vht —— Horizontal tail volume

—— Wing aspect ratio

ht —— Horizontal tail aspect ratio
αht —— Horizontal tail angle of attack
�cw m Wing mean aerodynamic chord
τht —— Horizontal tail thickness/chord ratio
mratio —— Ratio of HT and wing lift–curve slopes
xw m Position of wing aerodynamic center
xCG m x location of c.g.

Table 8 Fixed variables from constraints that are unique to the
horizontal tail model

Constants Units Description

CLht;max
—— Maximum horizontal tail lift coefficient

CLw;max
—— Maximum lift coefficient, wing

Cmac
—— Moment coefficient about aerodynamic center (wing)

SMmin —— Minimum allowed stability margin
ΔxCG m Center of gravity travel range
ηht —— Tail efficiency
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2. Trim Condition

The first sizing requirement is that the aircraft must satisfy the trim

condition [29], which implicitly requires that the full aircraft moment

coefficient be zero:

xw
�cw

≤
xCG
�cw

� Cmac

CLw

� VhtCLht

CLw

(117)

Thin airfoil theory is used to constrain the horizontal tail’s isolated

lift–curve slope [28].

CLht
� CLα;ht

αht (118)

However, the horizontal tail’s lift–curve slope is reduced by

downwash ϵ from the wing and fuselage [22]. Note that ηht is the
horizontal tail sectional lift efficiency:

CLα;ht
� CLα;ht0

�
1 −

∂ϵ
∂α

�
ηht (119)

The downwash can be approximated as the downwash far behind

an elliptically loaded wing:

(120)

(121)

Thus, an additional posynomial constraint is introduced to

constrain the corrected lift–curve slope:

(122)ht htht htht

3. Minimum Stability Margin

The second condition is that the aircraft must maintain a minimum

stability margin (SM) at both the forward and aft c.g. limits [29]:

SMmin �
ΔxCG
�cw

� Cmac

CLw;max

≤ Vhtmratio �
VhtCLht;max

CLw;max

(123)

The ratio of the horizontal tail and wing lift–curve slopes, mratio,

appears in Eq. (123) and is constrained using the relationship in [29].

The constraint is a signomial equality because it is not possible to

know a priori whether there will be upward or downward pressure on

mratio:

(124)ratio
ht

4. Stability Margin

The third condition is that the stability margin must be greater than

a minimum specified value for all intermediate c.g. locations:

SM ≤
xw − xCG

�cw
(125)

SM ≥ SMmin (126)

5. Horizontal Tail Drag

The horizontal tail employs the same drag model as the wing

[constraints (93–97)], with the exception of the parasitic drag

coefficient fit. Thewing’s parasitic drag fit [Eq. (92)] is replaced by a

fit to XFOIL [24] data for the TASOPT [5] T-series airfoils. The

TASOPT T-series airfoils are horizontal tail airfoils intended for

transonic use. The fit considers airfoil thickness, Reynolds number,

and Mach number. The softmax affine function fit is developed with

GPfit [10,25] and has an rms error of 1.14%:

C6.49
D0ht

≥ 5.288 × 10−20�Reht�0.901�τht�0.912�M�8.645

� 1.676 × 10−28�Reht�0.351�τht�6.292�M�10.256
� 7.098 × 10−25�Reht�1.395�τht�1.962�M�0.567
� 3.731 × 10−14�Reht�−2.574�τht�3.128�M�0.448
� 1.443 × 10−12�Reht�−3.910�τht�4.663�M�7.689 (127)

VI. Fuselage Model

At a high level, the purpose of a conventional commercial aircraft

fuselage can be decomposed into two primary functions: integrating

and connecting all of the subsystems (e.g., wing, tail, landing gear)

and carrying the payload, which typically consists of passengers,

luggage, and sometimes cargo. The design of the fuselage is therefore

coupled with virtually every aircraft subsystem.
Drela [5] performs a detailed analysis of fuselage structure and

weight, considering pressure loads, torsion loads, bending loads,

buoyancyweight, windowweight, payload-proportional weights, the

floor, and the tail cone. The majority of the constraints in this model

are adapted directly from these equations.

A. Model Assumptions

This model assumes a single circular-cross-section fuselage. The

floor structural model and the horizontal bending model assume

uniform floor loading. The model leverages the analytical bending

models fromDrela [5], whichmakes assumptions about symmetry in

bending loads. Shell buckling is not explicitly modeled while

designing bending structure but is accounted for by the

implementation of a lower yield stress for bending reinforcement

material relative to the nominal yield stress of the material.

B. Model Description

The fuselage model has 84 free variables and 96 constraints.

Tables 9 and 10 list the model’s free and fixed variables, respectively.

Fig. 5 Geometric variables of the horizontal tail model (adapted
from [21]).
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Table 9 Free variables in the fuselage model

Free
variables Units Description

A0h m2 Horizontal bending area constant A0h

A1hLand m Horizontal bending area constant A1h (landing case)
A1hMLF

m Horizontal bending area constant A1h (maximum aero
load case)

A2hLand —— Horizontal bending area constant A2h (landing case)
A2hMLF

—— Horizontal bending area constant A2h (maximum aero
load case)

Afloor m2 Floor beam cross-sectional area
Afuse m2 Fuselage cross-sectional area
AhbendbLand m2 Horizontal bending area at rear wing box

(landing case)
AhbendbMLF

m2 Horizontal bending area at rear wing box (maximum
aero load case)

AhbendfLand m2 Horizontal bending area at front wing box
(landing case)

AhbendfMLF
m2 Horizontal bending area at front wing box (maximum

aero load case)
Askin m2 Skin cross-sectional area
Avbendb m2 Vertical bending material area at rear wing box
B0v m2 Vertical bending area constant B0

B1v m Vertical bending area constant B1

CDfuse
—— Fuselage drag coefficient

Dfuse N Fuselage drag
Ihshell m4 Shell horizontal bending inertia
Ivshell m4 Shell vertical bending inertia
Lhtmax

N Horizontal tail maximum load
Lvtmax

N Vertical tail maximum load
M —— Cruise Mach number
Mfloor N ⋅m Maximum bending moment in floor beams
Pfloor N Distributed floor load
Rfuse m Fuselage radius
Sbulk m2 Bulkhead surface area
Sfloor N Maximum shear in floor beams
Snose m2 Nose surface area
V∞ m∕s Cruise velocity
Vbulk m3 Bulkhead skin volume
Vcabin m3 Cabin volume
Vcone m3 Cone skin volume
Vcyl m3 Cylinder skin volume
Vfloor m3 Floor volume
Vhbendb m3 Horizontal bending material volume b
Vhbendc m3 Horizontal bending material volume c
Vhbendf m3 Horizontal bending material volume f
Vhbend m3 Horizontal bending material volume
Vnose m3 Nose skin volume
Vvbendb m3 Vertical bending material volume b
Vvbendc m3 Vertical bending material volume c
Vvbend m3 Vertical bending material volume
Wapu lbf APU weight
Wbuoy lbf Buoyancy weight
Wcone lbf Cone weight
Wfloor lbf Floor weight
Wfuse lbf Fuselage weight
Whbend lbf Horizontal bending material weight
Wht lbf Horizontal tail weight
W insul lbf Insulation material weight
Wpadd lbf Miscellaneous weights (galley, toilets, doors, etc.)
Wpay lbf Payload weight
Wseats lbf Seating weight
Wshell lbf Shell weight
Wskin lbf Skin weight
Wvbend lbf Vertical bending material weight
Wvt lbf Vertical tail weight
Wwindow lbf Window weight
ρ∞ kg∕m3 Freestream density
ρcabin kg∕m3 Cabin air density
σx N∕m2 Axial stress in skin
σMh

N∕m2 Horizontal bending material stress
σMv

N∕m2 Vertical bending material stress
σθ N∕m2 Skin hoop stress
τcone N∕m2 Shear stress in tail cone
bvt m Vertical tail half-span
c0 m Root chord of the wing
hfuse m Fuselage height

Table 9 (Continued.)

Free
variables Units Description

lcone m Cone length
lfloor m Floor length
lfuse m Fuselage length
lshell m Shell length
nrows —— Number of rows
nseat —— Number of seats
pvt —— Dummy variable (1� 2λvt)
tshell m Shell thickness
tskin m Skin thickness
wfloor m Floor half-width
wfuse m Fuselage width
xb m x location of back of wing box
xf m x location of front of wing box
xhbendLand ft Horizontal zero bending location (landing case)
xhbendMLF

ft Horizontal zero bending location (maximum aero load
case)

xshell1 m Start of cylinder section
xshell2 m End of cylinder section
xtail m x location of tail
xup m x location of fuselage upsweep point
xvbend ft Vertical zero bending location
xwing m x location of wing c∕4

Table 10 Fixed variables in the fuselage model

Constants Units Description

MfuseD —— Fuselage drag reference Mach number
Nland —— Emergency landing load factor
Nlift —— Wing maximum load factor
R J∕kg ⋅ K Air specific heat
Tcabin K Cabin air temperature
W 0 0

floor N∕m2 Floor weight per unit area
W 0 0

insul N∕m2 Insulation material weight per unit area
W 0

window N∕m Window weight per unit length
Wavg:pass lbf Average passenger weight, including luggage
Wfix lbf Fixed weights (pilots, cockpit seats, navcom)
Wseat N Weight per seat
ΔPover psi Cabin overpressure
λcone —— Tailcone radius taper ratio
ρbend kg∕m3 Stringer density
ρcone kg∕m3 Cone material density
ρfloor kg∕m3 Floor material density
ρskin kg∕m3 Skin density
σbend N∕m2 Bending material stress
σfloor N∕m2 Maximum allowable floor stress
σskin N∕m2 Maximum allowable skin stress
τfloor N∕m2 Maximum allowable shear web stress
fapu —— APU weight as fraction of payload weight
ffadd —— Fractional added weight of local reinforcements
fframe —— Fractional frame weight
fpadd —— Other misc weight as fraction of payload weight
fstring —— Fractional stringer weight
g m∕s2 Acceleration due to gravity
hfloor m Floor beam height
lnose m Nose length
npass —— Number of passengers
nspr —— Number of seats per row
ps cm Seat pitch
pcabin N∕m2 Cabin air pressure
rE —— Ratio of stringer/skin moduli
rMh

—— Horizontal inertial relief factor
rMv

—— Vertical inertial relief factor
rw∕c —— Wing box width-to-chord ratio
waisle m Aisle width
wseat m Seat width
wsys m Width between cabin and skin for systems
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1. Cross-Sectional Geometry

The variables that define geometry are illustrated in Figs. 6 and 7.
The fuselage must be wide enough to accommodate the width of the
seats in a row and the width of the aisle:

wfuse ≥ nsprwseat � waisle � 2wsys (128)

The cross-sectional area of the fuselage skin is lower-bounded
using a thin-walled cylinder assumption:

Askin ≥ 2πRfusetskin (129)

The cross-sectional area of the fuselage is lower-bounded using the
radius of the fuselage:

Afuse ≥ πR2
fuse (130)

2. Pressure Loading

The axial and hoop stresses in the fuselage skin are constrained by
the pressurization loaddue to the difference between cabin pressure and
ambient pressure at cruise altitude.The thicknessof the skin is therefore
sized by the maximum allowable stress of the chosen material:

σx �
ΔPover

2

Rfuse

tshell
(131)

σθ � ΔPover

Rfuse

tskin
(132)

σskin ≥ σx (133)

σskin ≥ σθ (134)

3. Floor Loading

The floor must be designed to withstand at least the weight of the

payload and seats multiplied by a safety factor for an emergency

landing:

Pfloor ≥ Nland�Wpay �Wseats� (135)

Themaximummoment and shear in the floor are determined based

on this design load and thewidth of the floor, assuming that the floor/

wall joints are pinned and there are no center supports:

Sfloor �
Pfloor

2
(136)

Mfloor �
Pfloorwfloor

8
(137)

The floor beam cross-sectional area is constrained by the

maximum allowable cap stress and shear web stress for the beams:

Afloor ≥ 1.5
Sfloor
τfloor

� 2
Mfloor

σfloorhfloor
(138)

4. Shell Geometry

The cylindrical shell of the fuselage sits between the nose and

tailcone. The variables xshell1 and xshell2 define the beginning and end
of the cylindrical section of the fuselage, respectively, in the aircraft

x axis:

xshell1 � lnose (139)

xshell2 ≥ lnose � lshell (140)

The number of seats is equal to the product of the seats per row and

the number of rows. Note that noninteger numbers of rows are

allowed and necessary for GP compatibility. It is assumed that the

load factor is 1, so that the number of passengers is equal to the

number of seats:

nseat � nsprnrows (141)

npass � nseat (142)

The seat pitch and the number of rows of seats constrain the length

of the shell. The floor length is lower-bounded by the shell length and

twice the fuselage radius, to account for the space provided by

pressure bulkheads:

lshell ≥ nrowsps (143)

lfloor ≥ 2Rfuse � lshell (144)

The length of the fuselage is constrained by the sum of the nose,

shell, and tail cone lengths. A signomial equality is needed because

increased fuselage length results in improved tail control authority:

lfuse � lnose � lshell � lcone (145)

Other locations to constrain are the wing midchord and the wing-

box fore and aft bulkheads, which serve as integration limits when

calculating bending loads:

Fig. 6 Geometric variables of the fuselage model (adapted from [21]).

wfuse (=hfuse = 2 R fuse)

hhold

hf loor

waisle

wseat wsys

wfloor

Fig. 7 Geometric variables (cross section) of the fuselage model
(adapted from [21]).
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xf ≤ xwing � 0.5c0rw∕c (146)

xb � 0.5c0rw∕c ≥ xwing (147)

The skin surface area and, in turn, skin volume for the nose, main

cabin, and rear bulkhead are constrained. The surface area of the nose,

which is approximated as an ellipse, is lower-bounded using

Cantrell’s approximation [5]:

S
8∕5
nose ≥ �2πR2

fuse�8∕5
�
1

3
� 2

3

�
lnose
Rfuse

�
8∕5�

(148)

Sbulk � 2πR2
fuse (149)

Vcyl � Askinlshell (150)

Vnose � Snosetskin (151)

Vbulk � Sbulktskin (152)

The cabin volume, necessary for capturing buoyancy weight, is

constrained assuming a cylinder with hemispherical end caps:

Vcabin ≥ Afuse

�
2

3
lnose � lshell �

2

3
Rfuse

�
(153)

5. Tail Cone

The tail cone needs to be able to transfer the loads exerted on the

vertical tail to the rest of the fuselage. The maximum torsion moment

imparted by the vertical tail, Qvt, depends on the maximum force

exerted on the tail as well as its span and taper ratio, λvt. This torsion
moment, along with the cone cross-sectional area and the maximum

shear stress of the cone material, bounds the necessary cone skin

thickness. The cone cross-sectional area,which varies along the cone,

is coarsely approximated to be the fuselage cross-sectional area

(i.e., the cross-sectional area of the cone base):

Qvt �
Lvtmax

bvt
3

1� 2λvt
1� λvt

(154)

tcone �
Qvt

2Afuseτcone
(155)

Thevolume of the cone is a definite integral from the base to the tip

of the cone. This integral is evaluated [5] and combined with

Eqs. (154) and (155) to give a single signomial constraint on the cone

skin volume:

Rfuseτcone�1� pvt�Vcone

1� λcone
4lcone

≥ Lvtmax
bvt

pvt

3
(156)

A change of variables is used for compatibility with the tail

model, which uses pvt � 1� 2λvt to make a structural constraint

GP-compatible.
The cone skin shear stress is constrained to equal the maximum

allowable stress in the skin material:

τcone � σskin (157)

The tail cone taper ratio constrains the length of the cone relative to

the radius of the fuselage:

lcone �
Rfuse

λcone
(158)

6. Fuselage Area Moment of Inertia

The fuselage shell consists of the skin and stringers. Its area

moment of inertia determines how effectively the fuselage is able to

resist bending loads. A shell with uniform skin thickness and stringer

density has a constant area moment of inertia in both of its

bending axes.
To be consistent with [5], the horizontal bending moments are

defined as the moments around the aircraft’s y axis, caused by

horizontal tail loads and fuselage inertial loads, and vertical bending

moments are defined as the moments around the aircraft’s z axis,

caused by vertical tail loads.
The effectivemodulus-weight shell thickness is lower-bounded by

assuming that only the skin and stringers contribute to bending. This

constraint also uses an assumed fractional weight of stringers that

scales with the thickness of the skin:

tshell ≥ tskin

�
1� fstringrE

ρskin
ρbend

�
(159)

It is important to consider the effects of pressurization on the yield

strength of the bending material. Because pressurization stresses the

airframe, the actual yield strength of the fuselage bending material is

lower than its nominal yield strength, an effect captured using

posynomial constraints:

σMh
� rE

ΔPoverRfuse

2tshell
≤ σbend (160)

σMv
� rE

ΔPoverRfuse

2tshell
≤ σbend (161)

The aircraft shell, which is composed of the pressurized skin and

stringers, must satisfy the following horizontal and vertical area

moment of inertia constraints:

Ihshell ≤ πR3
fusetshell (162)

Ivshell ≤ πR3
fusetshell (163)

7. Horizontal Bending Model

There are two load cases that determine the required horizontal

bending material (HBM): maximum load factor (MLF) at Vne, where

N � Nlift (164)

Lht � Lhtmax
(165)

and emergency landing impact, where

N � Nland (166)

Lht � 0 (167)

Both load cases are considered at the aircraft’s maximum takeoff

weight. The constraints for each case are distinguished by the

subscripts “MLF” and “land”. Assuming that the fuselage weight is

uniformly distributed throughout the shell, the bending loads due to

fuselage inertial loads increase quadratically from the ends of the

fuselage shell to the aircraft c.g., as shown by the line representing

Mh�x� in Fig. 8. The tail loads are point loads at xtail, so the horizontal
tail moment increases linearly from xtail to the aircraft’s c.g. In the

maximum load factor case, the maximum moment exerted by the

horizontal tail is superimposed on the maximum fuselage inertial

moment at load factor Nlift to size the HBM required. For the

emergency landing impact case, only the fuselage inertial loads are

considered at Nland, assuming an unloaded horizontal tail.
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Several intermediate variables are introduced and used in

constraints that capture HBM relationships. A0h represents the HBM

area that is contributed by the aircraft shell:

A0h � Ihshell
rEh

2
fuse

(168)

Variables A1hLand and A1hMLF
are the HBM lengths that are required

to sustain bending loads from the tail. Note that as the distance from

the tail increases, the moment exerted from the tail increases linearly:

A1hLand ≥ Nland

Wvt �Wht �Wapu

hfuseσMh

(169)

A1hMLF
≥ Nlift

Wvt �Wht �Wapu � rMh
Lhtmax

hfuseσMh

(170)

Variables A2hLand andA2hMLF
represent the HBM required to sustain

the distributed loads in the fuselage. As the distance from the nose or

the tail increases, the moment exerted due to the distributed load

grows with the square of length:

A2hLand ≥
Nland

2lshellhfuseσbend
�Wpay �Wpadd �Wshell �Wwindow

�W insul �Wfloor �Wseats� (171)

A2hMLF
≥

Nlift

2lshellhfuseσMh

�Wpay �Wpadd �Wshell �Wwindow

�W insul �Wfloor �Wseats� (172)

Bending reinforcement material in the aircraft exists where the

shell inertia is insufficient to sustain the local bending moment.

Constraints are used to determine the location over the rear fuselage

xhbendζ forward of which additional HBM is required. Some simple

constraints on geometry are added to ensure a meaningful solution.

Constraints (173–180) apply for both load cases in the model (with

subscript ζ replaced by “MLF” or “land”):

A0h � A2hζ �xshell2 − xhbendζ �2 � A1hζ �xtail − xhbendζ � (173)

xhbendζ ≥ xwing (174)

xhbendζ ≤ lfuse (175)

To be able to constrain the volume of HBM required, the area

of HBM required must be constrained and integrated over the length

of the fuselage. As shown by [5], with some conservative

approximation, the volume of HBM may be determined through the

integration of the forward and rear wing boxHBMareas over the rear

fuselage:

Ahbendfζ ≥ A2hζ �xshell2 − xf�2 � A1hζ �xtail − xf� − A0h (176)

Ahbendbζ ≥ A2hζ �xshell2 − xb�2 � A1hζ �xtail − xb� − A0h (177)

HBM volumes forward, over, and behind the wing box are lower-

bounded by the integration of the HBM areas over the three fuselage

sections:

Vhbendf ≥
A2hζ

3

�
�xshell2 − xf�3 − �xshell2 − xhbendζ �3

	

� A1hζ

2

�
�xtail − xf�2 − �xtail − xhbendζ �2

	
− A0h�xhbendζ − xf� (178)

Vhbendb ≥
A2hζ

3

�
�xshell2 − xb�3 − �xshell2 − xhbendζ �3

	

� A1hζ

2

�
�xtail − xb�2 − �xtail − xhbendζ �2

	
− A0h�xhbendζ − xb� (179)

Vhbendc ≥ 0.5�Ahbendfζ � Ahbendbζ �c0rw∕c (180)

The total HBM volume is lower-bounded by the sum of the

volumes of HBM required in each fuselage section:

Vhbend ≥ Vhbendc � Vhbendf � Vhbendb (181)

8. Vertical Bending Model

The vertical bending material (VBM) is constrained by

considering the maximum vertical tail loads that a fuselage must

sustain. The vertical bending moment, shown as Mv�x� in Fig. 8,

Fig. 8 TASOPT fuselage bendingmodels (from [5]). The top graph shows the bending load distribution on the fuselage, whereas the bottomgraph shows
the area moment of inertia distribution.
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increases linearly from the tail to the aircraft c.g. because the tail lift is

assumed to be a point force.
As with horizontal bending, several intermediate variables are

introduced and used in constraints that capture VBM relationships.

B1v is the VBM length required to sustain the maximum vertical tail

loadLvtmax
. When multiplied by the moment arm of the tail relative to

the fuselage cross-sectional location, it gives the local VBM area

required to sustain the loads:

B1v �
rMv

Lvtmax

RfuseσMv

(182)

B0v is the equivalent VBM area provided by the fuselage shell:

B0v �
Ivshell
rER

2
fuse

(183)

xvbend is the location where the vertical bending moment of the

inertia of the fuselage is exactly enough to sustain the maximum

vertical bending loads from the tail, expressed by a signomial

equality:

B0v � B1v�xtail − xvbend� (184)

xvbend ≥ xwing (185)

xvbend ≤ lfuse (186)

Behind this point, no additional VBM is required.
The VBM area required at the rear of the wing box is lower-

bounded by the tail bending moment area minus the shell vertical

bending moment area:

Avbendb ≥ B1v�xtail − xb� − B0v (187)

Thevertical bending volume aft of thewing box is then constrained

by integrating Avbend over the rear fuselage, which yields the

following constraint:

Vvbendb ≥ 0.5B1v��xtail − xb�2 − �xtail − xvbend�2� − B0v�xvbend − xb�
(188)

The vertical bending volume over the wing box is the average of

the bending area required in the front and back of the wing box.

Because no vertical bending reinforcement is required in the forward

fuselage, the resulting constraint is simply:

Vvbendc ≥ 0.5Avbendbc0rw∕c (189)

The total vertical bending reinforcement volume is the sum of the

volumes over the wing box and the rear fuselage:

Vvbend ≥ Vvbendb � Vvbendc (190)

9. Fuselage Weight

The total weight of the fuselage is lower-bounded by the sum of all

of the constituent weights:

Wfuse ≥ Wapu �Wcone �Wfloor �Whbend �Wvbend �W insul

�Wpadd �Wseats �Wshell �Wwindow �Wfix (191)

The weight of the fuselage skin is the product of the skin volumes

(bulkhead, cylindrical shell, and nosecone) and the skin density:

Wskin ≥ ρsking�Vbulk � Vcyl � Vnose� (192)

The weight of the fuselage shell is then constrained by accounting

for theweights of the frame, stringers, andother structural components,

all of which are assumed to scale with the weight of the skin:

Wshell ≥ Wskin�1� ffadd � fframe � fstring� (193)

Theweight of the floor is lower-bounded by the density of the floor

beamsmultiplied by the floor beam volume, in addition to an assumed

weight/area density for planking:

Vfloor ≥ Afloorwfloor (194)

Wfloor ≥ Vfloorρfloorg�W 0 0
floorlfloorwfloor (195)

As with the shell, the tail cone weight is bounded using assumed

proportional weights for additional structural elements, stringers, and

frames:

Wcone ≥ ρconegVcone�1� ffadd � fframe � fstring� (196)

Theweight of the horizontal/vertical bendingmaterial is a product of

the bending material density and the HBM/VBM volume required

Whbend ≥ ρbendgVhbend (197)

Wvbend ≥ ρbendgVvbend (198)

The window and insulation weights are lower-bounded using

assumedweight-per-lengthandweight-per-areadensities, respectively.

It is assumed that only the passenger compartment of the cabin is

insulated and that the passenger compartment cross-sectional area is

approximately 55% of the fuselage cross-sectional area:

Wwindow � W 0
windowlshell (199)

W insul ≥ W 0 0
insul�0.55�Sbulk � Snose� � 1.1πRfuselshell� (200)

The auxiliary power unit (APU) and other payload proportional

weights are accounted for usingweight fractions.Wpadd includes flight

attendants, food, galleys, toilets, furnishing, doors, lighting, air

conditioning, and in-flight entertainment systems.The total seatweight

is a product of the weight per seat and the number of seats:

Wapu � Wpayfapu (201)

Wpadd � Wpayfpadd (202)

Wseats � Wseatnseat (203)

The effective buoyancy weight of the aircraft is constrained using a

specified cabin pressurepcabin, the ideal gas law, and the approximated

cabin volume. A conservative approximation for the buoyancy weight

that does not subtract the ambient air density from the cabin air density

is used:

ρcabin �
pcabin

RTcabin

(204)

Wbuoy � ρcabingVcabin (205)

The fixedweightWfix incorporates pilots, cockpit windows, cockpit

seats, flight instrumentation, and navigation and communication

equipment, which are expected to be roughly the same for all aircraft

[5]. The payload weight is bounded using an average weight per

passenger, which includes luggage:

Wpay ≥ Wavg:passnpass (206)
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10. Fuselage Drag

The drag of the fuselage is constrained using CDfuse
from TASOPT,

which calculates the drag using a pseudoaxisymmetric viscous/
inviscid calculation, and scaling appropriately by fuselage dimensions
and Mach number:

Dfuse �
1

2
ρ∞V

2
∞CDfuse

�
lfuseRfuse

M2

M2
fuseD

�
(207)

VII. Landing-Gear Model

The purpose of the landing gear is to support the weight of the
aircraft and allow it to maneuver while it is on the ground, including
during taxi, takeoff, and landing. Including the landing gear in
aircraft MDO is important, not only because it typically weighs
between 3 and 6% of the maximum aircraft takeoff weight [30], but
also because of how coupled its design is to other subsystems,
particularly the fuselage, wings, and engines. The landing-gear
geometry is constrained by wing position, engine clearance, takeoff
rotation, and tip-over criteria. In addition to being able to withstand
nominal static and dynamic loads, the landing gear also needs to be
able to absorb touchdown shock loads. These loads and the required
geometry determine the weight of the gear. Many of the constraints
imposed on landing-gear design are described in [30,31].

A. Model Assumptions

The landing-gear model assumes a conventional and retractable
tricycle landing-gear configuration for narrowbody commercial
aircraft such as a Boeing 737-800. The nose gear consists of a single
strut supported by two wheels. The main gear consists of two struts
mounted in the inboard section of the wings, each supported by two
wheels. The model only takes one c.g. location as an input (i.e., it
does not consider c.g. travel). It is also assumed that the main landing
gear retracts toward the centerline of the aircraft, rotating about the
x axis.

B. Model Description

The landing-gear model has 46 free variables and 54 constraints.
Tables 11 and 12 list the model’s free and fixed variables,
respectively. The variables that define geometry are illustrated
in Fig. 9.

1. Landing-Gear Position

The landing-gear track and base are defined relative to the x and y
coordinates of the nose and main gear:

T � 2ym (208)

xm ≥ xn � B (209)

The geometric relationships between the x coordinates of the main
gear, nose gear, and the c.g. position must be enforced. These
relationships are

xn � Δxn � xCG (210)

xCG � Δxm � xm (211)

Equations (210) and (211) must be satisfied exactly, meaning that
the constraints that enforce themmust be tight.Aswill be shown later,
the load through the nose gear and main gear is proportional to the
distance from the c.g. to the main and nose gear, respectively.
Because there is downward pressure on these loads (more load
generally means heavier landing gear), there is also downward
pressure on the distances Δxn and Δxm. Therefore, signomial
constraints are used for both relationships:

xn � Δxn ≥ xCG (212)

Table 11 Free variables in the landing-gearmodel (KE,kinetic energy)

Free variables Units Description

B m Landing-gear base
Eland J Maximum kinetic energy to be absorbed in landing
Fwm

—— Weight factor (main)
Fwn

—— Weight factor (nose)
Im m4 Area moment of inertia (main strut)
In m4 Area moment of inertia (nose strut)
Lm N Maximum static load through main gear
Ln N Minimum static load through nose gear
Lndyn N Dynamic braking load, nose gear
Lwm

N Static load per wheel (main)
Lwn

N Static load per wheel (nose)
Ssa m Stroke of the shock absorber
T m Main landing-gear track
W lg lbf Weight of landing gear
Wmax lbf Maximum aircraft weight
Wmg lbf Weight of main gear
Wms lbf Weight of main struts
Wmw lbf Weight of main wheels (per strut)
Wng lbf Weight of nose gear
Wns lbf Weight of nose strut
Wnw lbf Weight of nose wheels (total)
Wwa;m lbf Wheel assembly weight for single main gear wheel
Wwa;n lbf Wheel assembly weight for single nose gear wheel
Δxm m Distance between main gear and c.g.
Δxn m Distance between nose gear and c.g.
tan�ϕ� —— Angle between main gear and c.g.
tan�ψ� —— Tip over angle
dnacelle m Nacelle diameter
doleo m Diameter of oleo shock absorber
dtm in. Diameter of main gear tires
dtn in. Diameter of nose gear tires
lm m Length of main gear
ln m Length of nose gear
loleo m Length of oleo shock absorber
rm m Radius of main gear struts
rn m Radius of nose gear struts
tm m Thickness of main gear strut wall
tn m Thickness of nose gear strut wall
wtm m Width of main tires
wtn m Width of nose tires
xCG m x location of c.g.
xm m x location of main gear
xn m x location of nose gear
xup m x location of fuselage upsweep point
ym m y location of main gear (symmetric)

Table 12 Fixed variables in the landing-gear model

Constants Units Description

E GPa Modulus of elasticity, 4340 steel
K —— Column effective length factor
Ns —— Factor of safety
ηs —— Shock absorber efficiency
λLG —— Ratio of max to static load
ρst kg∕m3 Density of 4340 steel
σyc Pa Compressive yield strength 4340 steel
tan�γ� —— Dihedral angle
tan�ϕmin� —— Lower bound on ϕ
tan�ψmax� —— Upper bound on ψ
tan�θmax� —— Maximum rotation angle
dfan m Fan diameter
fadd;m —— Proportional added weight, main
fadd;n —— Proportional added weight, nose
g m∕s2 Gravitational acceleration
hhold m Hold height
hnacelle m Minimum nacelle clearance
nmg —— Number of main gear struts
nwps —— Number of wheels per strut
poleo psi Oleo pressure
tnacelle m Nacelle thickness
wult ft∕s Ultimate velocity of descent
yeng m Spanwise location of engines
zCG m Center of gravity height relative to bottom of fuselage
zwing m Height of wing relative to base of fuselage
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xCG � Δxm ≥ xm (213)

Themain gear position in the spanwise (y) direction is, on one side,
lower-bounded by the length of the gear itself and, on the other side,

upper-bounded by the spanwise location of the engines. Both of these

constraints are necessary to allow the landing gear to retract in the

conventional manner for typical narrowbody commercial aircraft:

ym ≥ lm (214)

ym ≤ yeng (215)

2. Wing Vertical Position and Engine Clearance

The difference between the lengths of the main gear and nose gear

is constrained by the vertical position of the wing with respect to the

bottom of the fuselage as well as the spanwise location of the main

gear and the wing dihedral. This relationship is a signomial

constraint:

ln � zwing � ym tan�γ� ≥ lm (216)

For aircraft with enginesmounted under thewing, the length of the

main gear is also constrained by the engine diameter because the

engines must have sufficient clearance from the ground. A signomial

constraint provides another lower bound on the length of the main

gear:

lm � �yeng − ym� tan�γ� ≥ dnacelle � hnacelle (217)

dnacelle ≥ dfan � 2tnacelle (218)

3. Takeoff Rotation

The aircraft must be able to rotate on its main wheels at takeoff

without striking the tail of the fuselage and, similarly, must be able to
land on its main gear without striking the tail [31]. This constrains the

location of the main gear. More specifically, the horizontal distance
between the main gear and the point at which the fuselage sweeps up
toward the tail must be sufficiently small, relative to the length of the

main gear, such that the angle relative to the horizontal from the main
wheels to the upsweep point is greater than the takeoff/landing

angles. The result is a signomial constraint that imposes a lower
bound on the length of the gear and the x location of the main gear:

lm
tan�θmax�

≥ xup − xm (219)

4. Tip-Over Criteria

A longitudinal tip-over criterion requires that the line between the

main gear and the c.g. be at least 15 deg relative to the vertical such
that the aircraft will not tip back on its tail at a maximum nose-up
attitude [31]. This puts a lower bound on the x location of the main

gear, as measured from the nose of the aircraft. Note that tan�ϕ� is
a design variable here, instead of ϕ, to make the constraint

SP-compatible:

xm ≥ �lm � zCG� tan�ϕ� � xCG (220)

tan�ϕ� ≥ tan�ϕmin� (221)

A lateral tip-over constraint is introduced to ensure that an aircraft

does not tip over in a turn [30]. The turnover angle is defined as

tanψ � zCG � lm
Δxn sin δ

(222)

where

tan δ � ym
B

(223)

Using the relationship

cos

�
arctan

�
ym
B

��
� B������������������

B2 � y2m
p (224)

this constraint can be rewritten in not only SP-compatible but

GP-compatible form as:

1 ≥
�zCG � lm�2�y2m � B2�

�Δxnym tan�ψ��2 (225)

Typically, this angle ψ should be no larger than 63 deg [31]:

tan�ψ� ≤ tan�ψmax� (226)

5. Landing-Gear Weight

The total landing-gear system weight is lower-bounded by

accounting for the weights of each assembly. An additional weight
fraction is used to account forweight that is proportional to theweight
of the wheels [32]:

W lg ≥ Wmg �Wng (227)

Wmg ≥ nmg�Wms �Wmw�1� faddm �� (228)

Wng ≥ Wns �Wnw�1� faddn� (229)

Fig. 9 Geometric variables of the landing-gearmodel (adapted from [21]).

18 Article in Advance / KIRSCHEN ETAL.

D
ow

nl
oa

de
d 

by
 M

ar
tin

 Y
or

k 
on

 D
ec

em
be

r 
23

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.C

03
43

78
 



The weight of each strut for both the main and nose struts is
lower-bounded by simplistically assuming a thin-walled cylinder
with constant cross-sectional area:

Wms ≥ 2πrmtmlmρstg (230)

Wns ≥ 2πrntnlnρstg (231)

It is assumed that the strut is sized by compressive yield and (more
stringently) by buckling, again assuming a thin-walled cylinder. This
constrains the area moment of inertia of the strut cross section, which
puts upward pressure on the radius and thickness of the struts. The
buckling constraint assumes that no side force is exerted on the
cylinder, which is perhaps aweak assumption due to forces exerted in
braking, for example, and due to the fact that aircraft do not typically
landwith themain gear struts perfectly normal to the runway surface:

2πrmtmσyc ≥
λLGLmNs

nmg

(232)

2πrntnσyc ≥ �Ln � Lndyn �Ns (233)

Lm ≤
π2EIm
K2l2m

(234)

Im � πr3mtm (235)

Ln ≤
π2EIn
K2l2n

(236)

In � πr3ntn (237)

Amachining constraint is used to ensure that the strut walls are not
too thin to be fabricated [30]:

2rm
tm

≤ 40 (238)

2rn
tn

≤ 40 (239)

Thewheel weights can be estimated using historical relations from
[31,32], which are again conveniently in monomial form:

Wmw � nwpsWwa;m (240)

Wnw � nwpsWwa;n (241)

Wwa;m � 1.2F0.609
wm

(242)

Fwm � Lwm
dtm (243)

Lwm
� Lm

nmgnwps
(244)

Wwa;n � 1.2F0.609
wn

(245)

Fwn � Lwn
dtn (246)

Lwn
� Ln

nwps
(247)

Main gear tire size can also be estimated using statistical relations.

The nose gear tires are assumed to be 80% of the size of themain gear

tires:

dtm � 1.63L0.315
wm

(248)

wtm � 0.104L0.480
wm

(249)

dtn � 0.8dtm (250)

wtn � 0.8wtm (251)

In addition, simple retraction space constraints are used to ensure

that the gear assemblies are not too wide to fit inside the fuselage:

2wtm � 2rm ≤ hhold (252)

2wtn � 2rn ≤ 0.8 m (253)

6. Landing-Gear Loads

The maximum static loads through the nose and main gear are

constrained by the weight of the aircraft and the relative distances

from the c.g. to the main and nose gear, respectively:

Ln � WmaxΔxm
B

(254)

Lm � WmaxΔxn
B

(255)

For the nose gear, there is an additional dynamic load due to the

braking condition. A typical braking deceleration of 3 m∕s2 is

assumed [31]:

Lndyn ≥ 0.31Wmax

lm � zCG
B

(256)

The nose gear requires adequate load for satisfactory steering

performance. A typical desirable range is between 5 and 20% of the

total load [31]:

Fig. 10 Illustration showing the extent of coupling between the
subsystem models, and the variables that directly couple them.
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Ln

Wmax

≥ 0.05 (257)

Ln

Wmax

≤ 0.2 (258)

7. Shock Absorption

Oleo-pneumatic shock absorbers are common to landing gear for

large aircraft. Their purpose is to reduce the vertical load on the

aircraft at touchdown, and they are typically sized by a hard landing

condition. The maximum stroke of the shock absorber can be

determined by considering the aircraft’s kinetic energy and the target

maximum load [27]:

Eland ≥
Wmax

2g
w2

ult (259)

Ssa �
1

ηs

Eland

LmλLG
(260)

As a preliminary model, the oleo size can be estimated using

historical relations that are conveniently in monomial form [31]. The

length of themain gear must be greater than the length of the oleo and

the radius of the tires:

loleo � 2.5Ssa (261)

doleo � 1.3

���������������������������
4λLGLm∕nmg

poleoπ

s
(262)

lm ≥ loleo �
dtm
2

(263)

a) Total cost vs GP iteration b) Cost contribution of fuel burn for GP iterations with
no relaxed constants. Since all slack variables are equal to
one, the fuel burn cost contribution is equivalent to
total cost

c) Cost contribution of slack variables and fuel burn vs GP iteration

Fig. 11 Plots illustrating the convergence of the objective function.
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VIII. Model Solution

Combining all of the previously described system and subsystem
models into a single full-aircraft optimization problem allows us to

capture the coupled nature of aircraft design. From a practical
perspective, the procedure of combining the subsystem models is
relatively straightforward because, as mentioned previously, each
model is fundamentally just a list of constraints. Coupling models

essentially just involves concatenating these lists.
The free variables that directly couple two or more of the

subsystem models are illustrated in Fig. 10.

A. Solution Time

The size of the full-system model and therefore its solution time

depends on the number of discretizations of the Breguet rangemodel.
With two cruise segments, the SP has 824 free variables and takes
sevenGP solves to converge in a time of 6.2 s, using a standard laptop
computer with a 2.5 GHz Intel Core i7 processor.

B. Convergence of the Objective Function

Convergence of the objective function [Eq. (19)] is plotted in
Fig. 11a. The total cost can be decomposed into a contribution from
slack variables and a contribution from fuel burn. These

decompositions are plotted in Fig. 11c. The fuel burn cost
contribution for GP iterations three through seven is plotted in
Fig. 11b, where it is equivalent to the total cost because all slack
variables are equal to 1 after the second GP iteration.

C. Solution Comparison to the Reference Aircraft

The optimal values for a selection of key design variables are
presented in Table 13. Discrepancies between computed values and
reference aircraft values are largely due to the placeholder engine

model, lack of a detailed flight profile, and the lack of a climb flight
condition, which particularly affects the sizing of the horizontal tail.
Both a detailed engine and flight profile model are the subject of

ongoing work. Additionally, total fuel burn is minimized in the
presented work, whereas an aircraft manufacturer likely optimizes a
more nuanced objective function, including manufacturing cost,
maintainability, and the ability to stretch the aircraft in the future. This

likely contributes to the discrepancy between the presented values.
The ability of the SP aircraft model to robustly solve for alternate
objective functions is discussed in future work.

D. Sensitivity to Initial Guess

Asmentioned in Sec. I, signomial programs require an initial guess
for the subset of variables that appear either on the greater side of
signomial inequality constraints or in signomial equality constraints.
The solution was obtained using an initial guess of one for each of

these variables. To see how sensitive this solution is to the choice of
initial guess, the problem was also solved using an order-of-
magnitude initial guess for each variable. Using the better initial

guess did not change the solutionvalues and only slightly reduced the
solution time (less than 0.1 s), largely because any speed increases are
mostly limited to the first GP solve, which constitutes a small portion
of total solve time.

E. Sensitivity to Fixed Parameters

The sensitivity of the objective function to each parameter is
obtained from the problem’s dual solution, at no additional
computational cost. Intuitively, the sensitivity is an estimate of the

percentage change in the objective value with a 1% change in the
value of the parameter. Select sensitivities are presented in Table 14.
At the optimal solution, the objective function is, perhaps

unsurprisingly, sensitive to minimum cruise Mach number Mmin

(0.530) and the range requirement Rreq (1.23). The sensitivity to
Wavg:passtotal is 0.544, which shows that uncertainties in assumptions

made about payload can have strong effects on aircraft sizing.
Parameters that are primarily devoted to ensuring safety, such as

never-exceed speed Vne and engine y location yeng, have relatively

high sensitivities of 0.425 and 0.510, respectively, giving an example
of the safety–performance tradeoff.
The sensitivity towingmaximum lift coefficientCLw;max

is negative
(−0.236) butweakly so due to opposing pressures from takeoff sizing
and structural sizing constraints. A higher maximum lift can mean

lower wing area for a takeoff sizing case (demonstrated by the strong
negative sensitivity onV1 of−0.959), but wing structural constraints
mitigate the negative sensitivity because a higher maximum lift

coefficient results in greater wing rootmoments at a given load factor.
The same opposing pressures mean that the sensitivity to horizontal

Table 13 Key solution variables with comparison to the
reference aircraft, where possible

Free variable Units Solution value Estimate for reference aircraft

System

Wdry lbf 90,789 92,822 [23]
D N 34,241a N/A
L∕D —— 19.7a N/A

Wing

—— 10.2 9.5 [23]
bw m 35.8 35.9 [23]
Sw m2 126.0 124.6 [23]
Ww lbf 20,533 N/A
Dw N 17,344a N/A

Vertical tail

vt —— 2.00 1.91 [23]
bvt m 8.35 7.16 [23]
Svt m2 34.9 26.4 [23]
Wvt lbf 3,990 N/A
Dvt N 6,548a N/A

Horizontal tail

ht —— 6.4 6.2 [23]
bht m 12.3 14.4 [23]
Sht m2 23 32.8 [23]
Wht lbf 629 N/A
Dht N 1,505a N/A
SM —— 0.15a N/A

Fuselage

Rfuse m 1.85 1.88 [21]
lfuse m 36.6 39.1 [21]
Wfuse kg 16,039 N/A
Dfu N 8,844a N/A

Landing gear

B m 13.6 15.6 [23]
T m 9.8 5.8 [23]
dtm in. 45 44.5 [23]
W lg lbf 3,304 N/A

aMean values over the discretized cruise.

Table 14 List of selected sensitivities to
aircraft parameters

Variable Units Sensitivity Value

System

Mmin —— 0.530 0.800
Rreq n mile 1.23 3000
Vne m∕s 0.425 144
yeng m 0.510 4.88

Wing

CLw;max
—— −0.236 2.79

Vertical tail

V1 m∕s −0.959 70.0

Horizontal tail

CLht;max
—— 0.0336 2.00

Fuselage

Wavg;pass;total lbf 0.544 180
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tail maximum lift coefficient CLht;max
is weakly positive (0.0336),

showing that structural considerations dominate the aerodynamic

forces in the effect of CLht;max
on fuel burn. Note that, despite being

used in similar sets of constraints, the sensitivities to CLw;max
and

CLht;max
have different signs due to the significant functional

differences between the wing and horizontal tail.

F. Solution Behavior with Variation in Fixed Parameters

Sensitivities provide local gradient information about the objective

function with respect to variation in fixed parameters. However, if a

designerwould like to understand the effect of larger changes in fixed

parameters, solving the optimization problem over a sweep of the

parameters of interest is required. With most MDO methods, the

computational cost of these sorts of sweeps would be prohibitive, but

the speed of SPs largely mitigates this issue. Sweeps allow designers

to understand how the objective value and other key variables change

with respect to fixed parameters. As an example, 20 aircraft with

capacities ranging from 150 to 210 passengers were optimized. The

optimal fuel weight and the total weight of the aircraft are plotted

in Fig. 12.

Each solution in the parameter sweeps gives the values of all free

variables and the sensitivities to all fixed parameters. Furthermore,

through the addition of dummy variables, the sensitivity to

constraints can be determined. For example, the sensitivities to

different component weights are plotted in Fig. 13. The decreasing

sensitivity to vertical tail weight and increasing sensitivity to fuselage

weight in Fig. 13 indicate the effects of a longer fuselage on the

fuselage and vertical tail weight trade. As the number of passengers
increases, the growing vertical tailmoment arm allows for a reduction
of the required vertical tail area, which reduces weight and drag. This
fuel burn benefit is offset by the fuselage weight growth due to a
larger fuselage volume and length, driven especially by the growth of
bending material weights as the fuselage lengthens.

IX. Conclusions

In this work, signomial programming has been used to tackle the
multidisciplinary design optimization of a commercial aircraft. More
specifically, signomial programming models have been created to
find the optimal preliminary sizing of a tube-and-wing-configuration
aircraft’s wing, vertical tail, horizontal tail, fuselage, and landing
gear. These subsystem models have been combined into a single
monolithic signomial program that captures the coupled nature of
aircraft design.
In doing this work, signomial programming has been

demonstrated as a viable approach to aircraft design optimization,
with a wide range of constraints fitting naturally into the required
formulation. Though not as rigorous as for geometric programs, the
solution method for signomial programs is disciplined and effective.
A significant improvement in fidelity over previous geometric
programming models has been achieved thanks to the relaxed
restrictions on signomial programs. Lagrange multipliers obtained
from the solution procedure mean that, in addition to finding an
optimal design, the models also give local sensitivities to fixed
variables, thus giving insight into the design space.
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