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Due to the coupled nature of aircraft design, it is important to consider all major subsystems when optimizing a
configuration. This is difficult when each individual subsystem model can be arbitrarily complex. By restricting an
optimization problem to have a certain mathematical structure, significantly more effective and tractable solution
techniques can be used. Geometric programming, one such technique, guarantees finding a globally optimal solution.
Although it has been shown that geometric programming can be used to solve some aircraft design problems, the
required formulation can prove too restrictive for certain relationships. Signomial programming is a relaxation of
geometric programming that offers enhanced expressiveness. Although they do not guarantee global optimality,
solution methods for signomial programs are disciplined and effective. In this work, signomial programming models
are proposed for optimal sizing of the wing, tail, fuselage, and landing gear of a commercial aircraft. These models are
combined together to produce a system-level optimization model. Signomial programming’s formulation allows it to
handle some key constraints in aircraft design, and therefore an improvement in fidelity over geometric programming
models is achieved. A primary contribution of this work is to demonstrate signomial programming as a viable tool for

multidisciplinary aircraft design optimization.

I. Introduction

EOMETRIC programming (GP)! is an optimization technique

that combines the expressiveness of nonlinear objectives and
constraints with the mathematical rigor of convex optimization to
provide a powerful approach to solving multidisciplinary aircraft
design optimization problems. For problems that can be formulated
as geometric programs (GPs), modern solvers guarantee globally
optimal solutions, are extremely fast, and return local sensitivities at
no extra cost, thanks to the principle of Lagrange duality. In previous
work, Hoburg and Abbeel [1] showed that many models common to
aircraft design can be represented directly in GP-compatible form and
that there are a number of innovative ways of dealing with models
that cannot, including (but not limited to) changes of variables and
GP-compatible fitting methods. Finally, it is also shown that such
problems can be solved efficiently using a standard laptop computer.
The aircraft design problem solved in [1] includes models for steady
level flight, range, takeoff, landing, a sprint flight condition, actuator
disk propulsive efficiency, simple drag and weight buildups, and a
beam wing box structure.

Because of these promising initial results, there is a strong desire
to extend the use of GP for aircraft design, both in breadth, by
considering more aspects of the aircraft design problem, and in depth,
by increasing the fidelity of the models used. Unfortunately, the
restrictions of the GP formulation mean that not all aircraft design
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The “GP” acronym is overloaded, referring both to geometric programs
(the class of optimization problem discussed in this work) and geometric
programming (the practice of using such programs to model and solve
optimization problems). The same is true of the “SP” acronym.

constraints can be readily implemented as part of a GP. A
generalization of GP called signomial programming (SP) helps to
address this by allowing constraints with less restrictive formulations [2].
A relatively small relaxation in the restriction on problem formulation
means that SP can handle a significantly more-general set of problems
than GP, but this comes at a cost; SP does not boast the same guarantee of
global optimality as GP. Despite this, solution methods remain
disciplined and effective by leveraging a difference of convex program
formulation for SP.

Signomial programming is important for aircraft design because it
allows a modeler to leverage the speed and reliability of GP on models
that are not GP-compatible, and it enables increasing fidelity where it is
not possible to maintain GP-compatibility. From the authors’ limited
experience, only a small proportion of the constraints in aircraft design
models require signomials, if any. In many cases, however, omitting
these constraints would mean failing to capture an important design
consideration. Sometimes, the constraint in question is the only
constraint that keeps one or more design variables meaningfully
bounded. Thus, optimization quality and robustness are sacrificed in
exchange for obtaining dual feasibility and/or higher model fidelity. Itis
important to stress that the purpose of this work is not to use SP liberally
but rather to use it in a targeted and precise manner, where the marginal
cost of introducing a signomial constraint can be justified by an
adequate increase in model fidelity or accuracy. Because they result in
convex restrictions on the feasible set, monomial and posynomial
constraints are still viewed as the preferred approach wherever possible.

There exists extensive research in multidisciplinary design
optimization (MDO) methods for conceptual aircraft design [3-7].
Of the many different frameworks in the literature, TASOPT [5] is
particularly relevant to the present work because of its use of physics-
based models, medium-fidelity analytical models, and multidisci-
plinary considerations of aircraft subsystems. Common challenges
faced in multidisciplinary design optimization include models that
are too computationally expensive to be practical for a designer, final
results that are sensitive to the choice of baseline design, evaluations
of black box functions that offer optimizers little-to-no visibility of
exploitable mathematical structure, and coupling of different analysis
tools that require delicate wiring between models and generally
another layer of complexity and opacity.

In the following sections, SP models are presented for design of the
wing, vertical tail, horizontal tail, fuselage, and landing gear of a
conventional tube-and-wing commercial aircraft. These models can
be used to determine optimal values for, among other things, the
preliminary geometry, positioning, and weight of each subsystem.
They are compilations of constraints, some developed by the authors
and others obtained from a variety of references. As a result, the
relationships are not necessary original, but their adaptation to

Article in Advance / 1

Check for
updates


http://dx.doi.org/10.2514/1.C034378
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.C034378&domain=pdf&date_stamp=2017-12-18

Downloaded by Martin Y ork on December 23, 2017 | http://arc.aiaa.org | DOI: 10.2514/1.C034378

2 Article in Advance / KIRSCHEN ET AL.

signomial programming is. Each model is readily extensible,
meaning that constraints can be added and made more sophisticated
with ease.

Each section of this paper describes a model, beginning with the
key assumptions regarding the model, followed by the enumeration
and description of the constraints. The intention is to demonstrate the
wide range of aircraft design constraints that fit naturally into the
signomial programming formulation.

The models are combined together in a full-configuration system-
level model that captures the highly coupled nature of aircraft design.
This model is solved using estimates for fixed variables based on a
reference aircraft, the Boeing 737-800. Although the emphasis of this
work is not on the solution, it does allow us to verify that the full-
system model has a solution that is not only feasible but also credible.
To the authors’ best knowledge, this is the first published work on SP
applied to aircraft design.

Before presenting these models, we begin with brief introductions
to both geometric and signomial programming.

A. Introduction to Geometric Programming

First introduced in 1967 by Duffin et al. [8], a GP is a specific type
of constrained, nonlinear optimization problem that becomes convex
after a logarithmic change of variables. Modern GP solvers employ
primal-dual interior point methods [9] and are extremely fast. A
typical sparse GP with tens of thousands of decision variables and one
million constraints can be solved on a desktop computer in minutes
[2]. Furthermore, these solvers do not require an initial guess and
guarantee convergence to a global optimum, whenever a feasible
solution exists. Being able to find optimal solutions without an initial
guess makes the technique particularly useful for conceptual aircraft
design, where it is important that results are not biased by
preconceptions of how an optimal aircraft should look.

These impressive properties are possible because GPs represent a
restricted subset of nonlinear optimization problems. In particular,
the objective and constraints can only be composed of monomial and
posynomial functions.

A monomial is a function of the form:

m(x) = c[ ]« 1)
j=1

where a; €R, c € R, and x; € R, . For instance, the familiar
expression for lift, (1/2)pV?C.S, is a monomial with
x=(p,V,C.,S),c=1/2,anda = (1,2, 1, 1).

A posynomial is a function of the form:

K n
P =) o ]x" 2
k=1 j=1

where a; € R”, ¢, € R, and x; € R ;. Thus, a posynomial is
simply a sum of monomial terms, and all monomials are also
posynomials (with just one term).

In plain English, a GP minimizes a posynomial objective function,
subject to monomial equality constraints and posynomial inequality
constraints. The standard form of a geometric program in
mathematical notation is as follows:

minimize pg(x)
subjectto p;(x) <1, j=1,...,n,,
mx)=1, k=1,...,n, 3)

where p; are posynomial (or monomial) functions, m; are monomial
functions, and x € R}, | are the decision variables.

Although this form may appear restrictive, surprisingly many
physical constraints and objectives can be expressed in the necessary
form [1]. Many relationships that cannot be formulated exactly as
posynomials can be approximated closely, using methods for fitting
GP-compatible models to data [10].

B. Introduction to Signomial Programming

Geometric programming is a powerful tool, with strong
guarantees. As discussed previously however, the formulation can
prove restrictive. Although changes of variable present an elegant
way of circumventing some formulation obstacles, there may not
always exist a suitable variable change. In particular, the restriction
¢ > 0 1in the definition of a posynomial can be a prohibitive obstacle
for a modeler. There are many models where being able to use
negative coefficients is necessary to accurately capture a relationship,
such as when trying to minimize the difference between two
quantities. An example of this is Lock’s empirical relationship for
wave drag [11] that is commonly used in conjunction with the Korn
equation to estimate the drag on a transonic wing:

CD > 20(M - Mcril)4 (4)

wave

A signomial is a function with the same form as a posynomial:

K n
s = e[ [ 5)
k=1 j=1

except that the coefficients ¢, € R can now be any real number. In
particular, they can be nonpositive. A signomial program is a
generalization of a geometric program that allows signomial
constraints. The “difference of convex” formulation of a signomial
program also permits the objective function to be a ratio of
posynomials and is given by:

minimize po_(x)
qo(x)
subjectto s;(x) <0, i=1,...,n,,
pj(x)sl, j=1,...,n,,,
mx)=1, k=1,...,n, (6)

Although Eq. (6) is standard form for a signomial program, the
majority of signomial constraints presented in this work take the form
p1(x) < pa(x) or s(x) < p(x) because these are often more intuitive
and both can easily be transformed into the standard form s(x) < 0.
This follows the geometric programming convention of using
posynomial inequality constraints of the form p(x) < m(x) and
monomial equality constraints of the form m; (x) = m,(x) [2].

Sometimes there is both upward and downward (optimization)
pressure on a variable, and it is not always possible to know a priori
which will dominate. In these cases, we can use signomial equality
constraints of the form s(x) = 0. However, as discussed in the next
section, these constraints are generally less desirable than signomial
inequality constraints from an optimization perspective. We therefore
use them as sparingly as possible in this work.

An important point is that adding just one signomial constraint to a
geometric program with arbitrarily many posynomial constraints
changes the geometric program to a signomial program.

The bad news is that the increased expressiveness of signomial
programming comes at a price; we can no longer guarantee a global
optimum because, unlike with GP, the log transformation of a
signomial program is not a convex optimization problem. The good
news is that there is a disciplined method for solving signomial
programs (SPs).

C. Signomial Programming Solution Methods

There are a number of different methods for solving SPs. The
majority of heuristics involve finding a local GP approximation to
the SP about an initial guess x°, solving this GP, and then repeating
the process, using the previous iteration’s optimal solution as the
point about which to take the next GP approximation. The process is
repeated until the solution converges [2,12]. The GP approximation
is obtained by approximating each signomial constraint with a
posynomial constraint.
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The first step, if it has not already been done, is to express each
signomial, s;(x), as a difference of posynomials, p;(x) and ¢;(x), and
rearrange them to the form of a posynomial less than or equal to
another posynomial:

5;(x) <0 @)
pi(x) —gi(x) <0 (8
pi(x) < q;(x) &)

Although Eq. (9) is not a GP-compatible constraint, it can be made
into a GP constraint if posynomial ¢;(x) is replaced with its local
monomial approximation §;(x; x°), because a posynomial divided by
a monomial is also a posynomial:

pi(x) < G;(x; x°) (10)
pi(x)
a0 = o

Finding a monomial approximation to a posynomial is analogous
to finding a local affine approximation to a nonlinear function in log
space. The best-possible local monomial approximation to a
posynomial g(x) at the point x° [2] is given by:

N
n X, an
@, = a0 [ (x_o) (12
n=1 n
where x,, are the elements of x and
0

a. = Xn aqi
! qi(xo) axn

13)

Signomial programming, using formulation (6), is an example of
difference of convex programming because the logarithmically
transformed problem can be expressed as:

minimize f((x) — go(x)

subjectto f;(x) —g;(x) <0, i=1,...,m (14)

where f; and g; are convex. This means that, for the convex (GP)
approximation f(x) of the nonconvex (SP) function f(x) — g(x),

f@) > fx) Vx (15)

Because of this, the true feasible set contains the feasible set of the
convexified problem, and there is no need for a trust region [13],
meaning that there is no need to tune solver parameters for controlling
initial trust region sizes and/or update rules.

Signomial equality constraints are solved by creating local
monomial approximations to the equality constraint. Unfortunately,
the feasible set of the monomial approximation is not a subset of the
original feasible set. Therefore, signomial equality constraints may
require a trust region, making them the least desirable type of
constraint. However, the signomial equality constraints in this work
did not require a trust region, and thus parameter tuning was not
necessary. For additional details on how signomial equalities are
implemented, see Opgenoord et al. [14].

The models solved in this paper employ a relaxed constants
penalty function heuristic. This heuristic is a minor variation on the
penalty convex—concave procedure described by Lipp and Boyd
[12]. The heuristic employs the previously discussed iterative
process; however, every constant in the model, c;, is paired with a
relaxed constant, ¢;. Slack variables, s;, are introduced to facilitate the
variation of the relaxed constants in accordance with Egs. (16-18):

azd (an
S
c; <C;s; (18)

The original objective function for each individual GP, f(x), is
modified to give a new objective function g(x) that heavily penalizes
slack variables greater than 1:

20
g(x) = (]_[,.s,-) f(x) (19)

The large penalty on slack in the objective function ensures that
slack variables equal 1 when the SP converges. In other words, when
the relaxed SP converges it is identical to the original model. The
introduction of slack variables is advantageous because it allows
early GP iterations to move through regions that are infeasible in the
original model, reducing solution time while increasing model
stability. It was observed in practice that the relaxed constants penalty
method used in this paper was faster than the penalty convex concave
procedure detailed in [12] because it involved introducing fewer
additional variables, allowing the model to build faster.

The models presented in this work are composed and solved using
GPkit [15], a Python package for defining and manipulating geometric
programming models, with MOSEK [16] as the backend solver.

II. System-Level Model

The objective of the optimization problem presented in this work is
to minimize fuel consumption, or equivalently fuel weight Wy, using
an adaptation of the Breguet range formulation introduced in [1]. The
purpose of the system-level model is threefold; it enforces system-level
performance constraints such as required range and minimum cruise
speed, it encodes weight and drag buildups, and it constrains system-
level properties such as the aircraft’s c.g. and moment of inertia. In
doing these things, it also couples the subsystem models.

A. Model Assumptions

The model presented in this work is a set of constraints that
describe the performance and design of a conventional-configuration
narrowbody aircraft, with a simple cruise-only mission profile.
A more sophisticated mission profile is left for future work.

B. Model Description

Tables 1 and 2 list the free and fixed variables used in the system-
level constraints.

1. Flight Performance

The Breguet range formulation is discretized over multiple cruise
segments to improve accuracy as the aircraft weight changes,
meaning every constraint is applied during each of then =1...N
flight segments. For readability, the n subscripts are not used in the
remainder of the manuscript, but still apply.

The sum of the cruise segment ranges must be greater than or equal
to the required range of the aircraft. This is enforced using a signomial
constraint:

N
D Ry 2Ry (20)
n=1

A series of N — 1 monomial equalities constrain all of the flight
segments to be of equal length, which is helpful for applying the
model to more sophisticated mission profiles.

R|:R2:...:RN (21)
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Table1 Free variables in the system-level aircraft model and/or

shared by submodels
Free variables  Units Description
Cp — —  Drag coefficient
D N Total aircraft drag (cruise)
Diyse N Fuselage drag
Dy, N Horizontal tail drag
D, N Vertical tail drag
Dying N Wing drag
L. kg -m? Fuselage moment of inertia
Zuil kg-m? Tail moment of inertia
I, kg-m? Wing moment of inertia
I, kg-m? Total aircraft moment of inertia
L/D — —  Lift/drag ratio
M — —  Cruise Mach number
R nmile Segment range
Sw m?  Wing reference area
Vro m/s  Takeoff velocity
Ve m/s  Cruise velocity
Wave Ibf Average aircraft weight during flight segment
Whuoy Ibf Buoyancy weight
cone Ibf Cone weight
Wy Ibf Aircraft dry weight
Wena Ibf Aircraft weight at end-of-flight segment
Wiiel, i Ibf Primary fuel weight (excludes reserves)
Wiuel, e Ibf Maximum fuel weight carried in wing
Wiael Ibf Weight of fuel burned per flight segment
W tuse Ibf Fuselage weight
Wipesys Ibf Power system weight
Whe Ibf Horizontal tail weight
lg Ibf Landing-gear weight
W max Ibf Maximum aircraft weight
Wing Ibf Main landing-gear weight
W mise Ibf Miscellaneous system weight
Wie Ibf Nose landing-gear weight
Woay Ibf Payload weight
Wtart Ibf Aircraft weight at start of flight segment
W Ibf Vertical tail weight
Wing Ibf Wing weight
Axye, m Wing aerodynamic center shift
Aw — —  Wing taper ratio
¢ — —  Takeoff parameter
a m/s  Speed of sound
b, m Wingspan
Croot,, m Wing root chord
Stuel — —  Percent fuel remaining
Lfuse m Fuselage length
Ly m Vertical tail moment arm
t min  Flight time
XcG,, m x location of horizontal tail c.g.
XcG, m x location of landing-gear c.g.
XCGy, m x location of miscellaneous systems c.g.
XcG,, m x location of vertical tail c.g.
XcG m x location of c.g.
XTO m Takeoff distance
Xp m Wing box forward bulkhead location
Xnpesys m Power systems centroid
Xmg m Main landing-gear centroid
Xng m Nose landing-gear centroid
Xying m Wing centroid
y — —  Takeoff parameter
Zbre — —  Breguet parameter

The Breguet range relationship is enforced with GP-compatible
constraints, using a dummy variable, as done in [1].

Tore, | %
re, re,
queln > (Zbre,, + 2 + 6 )Wend” (22)
D
Zbre,, > criy — (23)
avg,
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Table 2  Fixed variables in the system-level
aircraft model and/or shared by submodels

Constants ~ Units Description

Loy max — — Maximum lift coefficient, wing
M in — —  Minimum Mach number

Rieq nmile Required total range
N Thrust per engine in cruise
Tto N Thrust per engine at takeoff
Wapu N APU weight
eng N Engine weight
1o kg/m?  Takeoff density
cr 1/h Thrust specific fuel consumption
S el — —  Fuel reserve fraction
g m/s?>  Gravitational acceleration
I, — — Maximum runway length
Tleng — — Number of engines
Yeng m Engine moment arm
by = 24)
Ve,
O
D), D,
Dn = neng Tn (26)

The average weight during a cruise segment is given by the
geometric mean of the segment's start and end weights, with the
addition of buoyancy weight. The geometric mean is used because it
improves the model's stability.

Wavg,, 2 v Wstan,, Wend,l + Wbuoy,, (27)

The aircraft weight at the start of cruise is assumed to equal its
maximum weight, which comprises dry weight, payload weight, and
fuel weight, including a reserve requirement. The weight lost during
each segment is equal to the weight of the fuel burned during that
segment. These relationships are enforced using a series of monomial
and posynomial constraints:

Warty = Wnax (28)

Weart, = Wend, + Whuel, 29)

Wart,ys = Wend, (30)

Wendy 2 Wary + Wpay + fruel,, Whael, 1, 3D

Winax 2 Wary + Wiy + Wil (1 + fruel,,,) (32)
N

Wiiel iy = Z Wiel, (33)

n=1

The dry weight and drag of the aircraft are constrained using
simple buildups of each component’s weight and drag:

Wdry 2 Wwing + quse + Wvl + Wht + ng + nengweng + Wmisc
(34)
Dn > Dwing,, + Dfuse,, + th,l + Dht,, (35)
Mach number is constrained to be greater than a user-specified

minimum value, to represent, for example, an operational
requirement:
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M=V (36)
a
M > Mmin (37)

The takeoff model is taken directly from [1]. An additional
constraint on takeoff velocity is added to ensure adequate margin
above stall speed [17]:

X0 <1, (38)
8xtoTT0
l+y<22—— (39
V%"OWmax
52.7 50,3
1> 00464255 + 1.044 5 (40)
y y
fZLOTOV%OSwCD @
2W
Vo = 1.2 |——7max (42)
Ly max SprO

Atmospheric pressure, density, temperature, and speed of sound
are constrained using the atmosphere model described in [18].
Dynamic viscosity is constrained using the viscosity model
developed in [19], which is based off the Sutherland viscosity
model [20].

2. System-Level Properties

The constraint for the aircraft c.g. is GP-compatible and is applied
for each flight segment. The fuselage and payload weights are
assumed to be evenly distributed through the length of the fuselage,
and the wing weight acts directly atits area centroid, Xyine + AxXye, - It
is assumed that the fuel weight shifts in proportion to the remaining
fuel fraction fr,; and that a reserve fuel fraction ff,  remains in the
wing. The wing box forward bulkhead location x, is used as a
surrogate variable for engine c.g.:

‘/VendxCG,x > Wwing(xwing + Axa\cw)

+ quelp"m (ffueln + ffue],es) (xwing + Axacwffuel,,)

1
+ 5 (quse + Wpay)lfuse + VVherGhl + thxCGV‘

+ nengwengxb + VvngCGlg + VVmischGm“C (43)
"W
Fruel, > M (44)
quel

prim

The landing-gear c.g. is constrained by the moment of each set of
landing gear about the nose of the aircraft:

vvlngG]g > ngxmg + anxng (45)

The miscellaneous equipment c.g. includes only power systems in

the current model but is defined to allow for refinements in c.g.
modeling in future work:

VVmischG“,mC > Whpesysxhpesys (46)

The aircraft’s moment of inertia is the sum of the moments of
inertia of its major components:

L>I1, +1

= 1y
Zwing

+1 47

Zfuse Ztail

The wing moment of inertia model includes the moment of inertia
of the fuel systems and engines. It assumes that the wing and fuel
weight are evenly distributed on the planform of the wing. This is an

overestimate of the wing moment of inertia with full fuel tanks:

L > Neng Wengygng + quelwing + Wwing b?x,vcroolw Ay + l
ving g g 168, 3

(48)

The fuselage moment of inertia includes the payload moment of
inertia. It is assumed that payload and fuselage weight are evenly
distributed along the length of the fuselage. The wing root quarter-
chord location acts as a surrogate for the c.g. of the aircraft:

3 3
I, 2 (Wf“sc + WP"‘Y) (xwing + lvt) 49)
" 8 3lfuse

The moment of inertia of the tail is constrained by treating the tail
as a point mass:

Wou + Wy + W,
L, > (—“"“ g“ ‘“)l%t (50)

III. Wing Model

The overarching purpose of an aircraft wing is to generate
sufficient lift such that the aircraft can take off, climb, cruise, descend,
and land safely. Typically, the wings also carry fuel tanks and support
the engines. Unfortunately, wings are heavy and produced drag. The
purpose of this model is to capture all of these considerations.

A. Model Assumptions

The wing model assumes a continuous-taper, low-wing
configuration with a modern transonic airfoil. It does not currently
consider wing twist or wing dihedral. It also does not consider roll or
yaw stability.

B. Model Description

The wing model has 52 free variables and 49 constraints. Tables 3
and 4 list the model’s free and fixed variables, respectively.

1.  Wing Geometry

Before considering a wing’s performance, the variables that
prescribe its geometry must be appropriately constrained. The
variables that define the wing geometry are illustrated in Fig. 1,
using an adaptation of a figure from [21].

The relationship between reference area, span, and mean
geometric chord is enforced using a constraint that assumes a
trapezoidal planform. This constraint is implemented as a signomial
equality constraint because there is both upward and downward
(optimization) pressure on the reference area, and it is not possible to
know a priori which will dominate:

Sw — bw Crool,,, ;_ Ctip,,, (51)

The mean aerodynamic chord relationship for a trapezoidal wing
can be written as a posynomial constraint, and its spanwise location
can be written as a monomial equality constraint. These constraints
make use of dummy variables p,, and g,,, introduced by the structural
model, as follows:

2(1+4 2
C_‘w == m Crootw (52)
3 qu
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Table 3 Free variables in the wing model

Free variables  Units Description

R, — —  Wing aspect ratio

Cp, — —  Drag coefficient, wing

D, — —  Wing induced drag coefficient

C DI:’w — —  Wing parasitic drag coefficient

Cp, — —  Lift coefficient, wing

Cr,., — —  Lift—curve slope, wing

D, N Wing drag

Ly, N Horizontal tail downforce

Ly, N Maximum horizontal tail downforce

Lol N Total lift generated by aircraft

L, N Wing lift

Ly, m Maximum lift generated by wing

M — —  Cruise Mach number

Re,, — —  Cruise Reynolds number (wing)

Sw m? Wing area

Ve m/s Freestream velocity

V fuel.max m? Available fuel volume

Wy N/m?  Wing loading

Wave Ibf Average aircraft weight during flight segment

Wiielow Ibf Total fuel weight

W max Ibf Maximum aircraft weight

Wruet,, Ibf Wing box weight

Wing Ibf Wing weight

AL, N Center wing lift loss

AL, N Wing-tip lift loss

Axgy, N Wing aerodynamic center shift

ay, — —  Wing angle of attack

Cu m Mean aerodynamic chord (wing)

Ny — —  Center wingspan coefficient

Aw — —  Wing taper ratio

" N-s/m?> Dynamic viscosity

Poo kg/m3  Freestream density

Ty — —  Wing thickness/chord ratio

b, m Wingspan

Croot,, m Wing root chord

Ciip, m Wing-tip chord

e — —  Oswald efficiency factor

f(Ay) — —  Empirical efficiency function of taper

Puw — —  Dummy variable (1 + 24,,)

Do N/m  Center section theoretical wing loading

Gu — —  Dummy variable (1 + 4,,)

Ve, m Spanwise location of mean aerodynamic chord

Wing box

Leqp — —  Nondimensional spar cap area moment of inertia

. N Root moment per root chord

Weap Ibf Weight of spar caps

Wiselying Ibf Maximum fuel weight carried in wing

Waeb Ibf Weight of shear web

v — —  Dummy variable (2 + ¢+ 1)/(t + 1)?)

Teap — —  Nondimensional spar cap thickness

tweb — —  Nondimensional shear web thickness
byquw

yEu — w‘]u, (53)

3pw

The wing taper ratio is defined by a monomial equality constraint.
It is necessary to lower bound taper to avoid an unacceptably small
Reynolds number at the wing tip [22]. For the purpose of this work,
the taper is lower-bounded using the taper ratio of the reference
aircraft’s wing [23]:

dy = —tow (54)
Croot,,
A 2 Ay, (55)

Finally, a maximum span constraint can be imposed to reflect, for
example, a gate size constraint:

by < by max (56)

Table4 Fixed variables in the wing model

Constants  Units Description

N/m? Maximum wing loading

Smax
Weng N Engine weight
Oy max — — Maximum angle of attack
cos(A) — — Cosine of quarter-chord sweep angle
Nw — — Lift efficiency
A — — Minimum wing taper ratio
Pruel kg/m3  Density of fuel
tan(A) — — Tangent of quarter-chord sweep angle
by max m Maximum allowed wingspan
fi, — —  Center wing lift reduction coefficient
J Lot — — Total lift divided by wing lift
L — —  Wing-tip lift reduction coefficient
S aileron — — Aileron added weight fraction
Sttap — — Flap added weight fraction
fruelusable ~ — —  Usability factor of maximum fuel volume
S tuel, wing — —  Fraction of total fuel stored in wing
Sflete — — Lete added weight fraction
Libs — —  Wing rib added weight fraction
Slat — — Slat added weight fraction
S spoiler — — Spoiler added weight fraction
fiip — — Induced drag reduction from wing-tip devices
Fwatt — —  Wing attachment hardware added weight fraction
g m/s?>  Gravitational acceleration
Yeng min  Engine moment arm
Wing box
Niige — —  Wing loading multiplier
Peap kg/m3 Density of spar cap material
Pweb kg/m> Density of shear web material
O max.shear Pa Allowable shear stress
O max Pa Allowable tensile stress
, — —  Fractional wing thickness at spar web
Tw/e — —  Wing box width-to-chord ratio
2. Wing Lift

Total lift is constrained to be greater than the weight of the aircraft
plus the downforce from the horizontal tail. The constant f; i is
greater than 1 and used to account for fuselage lift:

Ltolal 2 Wavg + Lht (57)

Llotal = fme]/wmng (58)

The standard equation for the lift of a wing is a natural monomial
equality constraint:

1

Lw = EpooV%oSwCL,,, (59)

However, this assumes a continuous unobstructed wing planform.

Correcting for lift loss at the fuselage and at the wing tips gives the

adjusted Eq. (60), which can be rearranged into the posynomial
constraint [Eq. (61)]:

1
L, = Epmvgoswch — AL, —2AL, (60)
1
EpwVEOSwCL“_ >L,+ AL, +2AL, 61)

The lift corrections [5] are given as monomial equality constraints:

b,
ALU = nnfL(, TUPO (62)

ALI = fL,pncroot,“}“%U (63)
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N\

Fig. 1 Geometric variables™ of the wing model.
The lift coefficient of the wing goes linearly with the angle of
attack, which is limited by a maximum angle of attack due to stall:

Cr, =Cp,, o (64)

Ay < Ay max (65)

The DATCOM formula is an analytic function for estimating the
lift—curve slope of a wing or tail, based on empirical results [22]. This
relationship is used as a signomial equality constraint, after some
algebraic manipulation.

2R,
Ci,, = al (66)
T 24+ (R )L+ tan? A — M?) + 4
2
Lo 8rCy,,
T(1+tan2A—M2)+W =47T2 (67)

Maximum wing lift is constrained using an assumed load factor
Nig:

I Lo oing Lo Z Nttt Winax + L (68)

‘max

Finally, wing loading is constrained to be less than a user-specified
maximum:

1
Ws = 3P CL, Vs (69)
(70

3. Wing Weight

Wing weight is constrained to be greater than the wing structural
weight plus a series of fractional weights to account for wing ribs and
control surfaces:

Wwing 2 Wslmclw (1 + fﬂap + fslat + fai]emn + flele + fribs
+ fspoiler + fwalt) (71)

**Geometric in the sense that they prescribe geometry, not in the sense of
geometric programming, which derives its name from the same etymology as
the geometric mean.

Fig. 2 Geometric variables of the wing box cross section (adapted
from [S]).

Wing structural weight is constrained using an adaptation of the
structural model from Hoburg and Abbeel [1], which comprises 12
monomial and posynomial constraints:

Wstruct,,,. > (Wcap + Wweb) (72)

S 80cap8 /e LeapS Y

Wesp 2 =22 208 (73)
80web T nTrolwebS 1w "V
Wee > L ebg;Aqv Ozh v (74)
Ly
0.86
VA% > 0.14p0% + =7 5)
Pw
pw21+24, (76)
2g, > 1+ p, )
0922 R
~ T e Tuge 2 0925, BapTuge + L (78)
AQWMrN' Tw w2
Ic;\pS wO max
/RWLW Ni w2
S wO max, shear Tylweb
b ,2
AR, == 81
S, 81)
7, <0.14 (82)

The variables used to prescribe the wing box’s cross-sectional
geometry are illustrated in Fig. 2.
The original root bending moment constraint,

> /Rwmeax Pw

M,
24

(83)

is replaced with a more-sophisticated signomial constraint that
considers the load relief effect due to the weight of the engine and the
fuel tanks. To derive the constraint, the lift per unit span of wing is
assumed to be proportional to the local chord, and the wing planform
area is partitioned into an untapered (rectangular) area, A, and a
fully tapered (triangular) area, A;:

At = Ctip,, b, (84)

1
Atri = 5(1 - lw)cmot,,,bw (85)
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The wing area component loads are treated as point loads to
determine the equivalent wing root moment:

Mrcroolw > (meax - Nliﬂ(WWing + ffuel,wing quelmm,))

1 1 b
: (gAtri + ZArect) ﬁ - Nlileengyeng (86)

This constraint can be further simplified to remove the need for
intermediary variables A.; and A because

1 1 1 1
gAtri + ZArect = E (croot,,, - Ctipu,)bw + thipu.bw (87)
by
= E (Crootw + ZCtip,,,) (88)

Substituting Eq. (88) into constraint (89) yields the following wing
root moment constraint:

Mrcrootw > (meﬂx - Nliﬂ (Wwing + ffuel,wing quelmm]))
b3,
: 128 (Crool,“ + 2Ctipw.) - Nlileengyeng (89)
w

Note that this provides a conservative estimate for the root moment
because it assumes that the lift per unit area is constant throughout the
wing, whereas in reality the lift per unit area diminishes toward the
wing tips.

4. Wing Drag

Wing drag is captured by five monomial and posynomial
constraints. The parasitic drag coefficient is constrained using a
softmax affine fit of XFOIL [24] simulation data for the TASOPT [5]
C-series airfoils, which are representative of modern transonic
airfoils [5]. The fit, which considers wing thickness, lift coefficient,
Reynolds number, and Mach number, was developed with GPfit
[10,25] and has an rms error of approximately 5%. Constraint (97) is
an adaption of the standard definition of the induced drag coefficient
[17], with an adjustment factor for wing-tip devices:

1
Dy = 30<ViSuCo, (90)
Cp, 2 Cp, +Cp, 1)

Re,,
1000
Re,,
1000

—0.550
cbf5,21.61( ) (z,) 2 (M cos(A))*CLTS

—-0.389
—+ ()()466( ) (Tw)().784 (M COS(A))—O.34() C(szl

Rey, \ 70217 s 19.3 (~1.15
+ 191 1000 (7)> 72 (M cos(A) P~ Cr,

R 118
+2.82e = 12( 1) (2,) IO (M cos(A)OIFCL I (92)
1000 w
vz
Re,, =P =t 93)
U
i
Cp. = fu il 94
pi, = fip neR,, 94)

The Oswald efficiency is constrained by a relationship from [26],
in which the authors fit a polynomial function to empirical data.
Given that all polynomials are signomials, this can easily be used in
the SP framework:

0.98 |

0.96

0.94 |
NS]
0.92} Feasible Region
0.90
0.88 ]
0.2 0.4 0.6 0.8 1.0
A

Fig. 3 Empirical relationship for Oswald efficiency as a function of
taper for a wing with /R,,=10.

1

= T+ f AR, ©3)

F () > 0.052414 = 0.1523, + 0.16592, — 0.07064,, + 0.0119
(96)

The Oswald efficiency is plotted as a function of taper ratio, as
imposed by this pair of constraints, in Fig. 3.

5. Wing Aerodynamic Center

The wing’s true aerodynamic center and c.g. are shifted back with
respect to its root quarter-chord, due to its sweep. Assuming that the
lift per unit area is constant, the magnitude of this shift can be
calculated by integrating the product of the local quarter chord offset,
6x(y), and local chord, c¢(y), over the wing half-span:

2 [b/2
Mne, =5 [ e dy ©1)
0
2
C(y) = (] - (1 - j’w)b_y) Croot,, (98)
ox(y) = ytan(A) 99)

By substituting Eqs. (98) and (99) into Eq. (97), expanding out the
integral, and relaxing the equality, Ax,., can be constrained as
follows:

1 1 2
Axacw > Z tan(A)ﬂwcmulw (5 + g/lw) (100)

6. Fuel Volume

Fuel tanks are typically located inside the wing box. Using the
geometry of a TASOPT-optimized 737-800 [5], a constraint on
the maximum fuel volume in the wing was developed. For a wing of
the same mean aerodynamic chord, thickness, and span as a TASOPT
737-800, the maximum available fuel volumes in the wing will match
exactly. To allow for the possibility of auxiliary tanks in the
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Table 5 Free variables from constraints that are unique to the
vertical tail model (VT, vertical tail)

Table 6 Fixed variables from constraints that are unique to the
vertical tail model

Free variables Units

Description

Constants ~ Units Description

ARy — —  Vertical tail aspect ratio
Co,, — —  Viscous drag coefficient
Luo — —  Vertical tail lift coefficient during engine out
Ly sncing — —  Vertical tail lift coefficient during landing
vt N Vertical tail viscous drag, cruise
Dy N Engine out windmill drag
I, kg/m?  Total aircraft moment of inertia
Ly ko N Vertical tail lift in engine out
Vi N Maximum load for structural sizing
— —  Cruise Mach number
Re, — —  Vertical tail Reynolds number
St m? Vertical tail reference area (half)
Ve m/s Freestream velocity
Wy Ibf Vertical tail weight
AXjeaq,, m Distance from c.g. to VT leading edge
Al m Distance from c.g. to VT trailing edge
Cyt m Vertical tail mean aerochord
u N-s/m?> Dynamic viscosity
Poo kg/m3  Freestream density
Tyt — —  Vertical tail thickness/chord ratio
by m Vertical tail half-span
Crooty, m Vertical tail root chord
Ctip,, m Vertical tail tip chord
fuse m Length of fuselage
Ly m Vertical tail moment arm
XcG, m x-location of vertical tail c.g.
XcG m x-location of aircraft c.g.
2z m Vertical location of mean aerodynamic chord

vt

horizontal tail or fuselage, the user-specified value fpelusaple 1S
introduced:

Vfuel.max < 0'3035121)1711)7111 (10])
vauelszz < Pruel Vfuel,max 8 ( 102)

ing W,
quelw‘g > ffuel.wmg fuel iy (103)

ffuel.usable

IV. Vertical Tail Model

At a conceptual design level, the purpose of an aircraft’s vertical
tail is twofold. First, it must provide stability in yaw. Second, it must
provide adequate yaw control authority in critical flight conditions.
For a multi-engine aircraft, the critical flight condition is typically an
engine failure at low speeds. The vertical tail must be capable of
providing sufficient side force in this case [27]. The vertical tail must
also provide adequate yaw rate acceleration during landing flare in
crosswind conditions. The design of the vertical tail is therefore
coupled to the size of the fuselage, the position of the engines, and the
aircraft’s moment of inertia.

A. Model Assumptions

The high-level assumptions for this model are that the horizontal
tail is mounted on the fuselage, so as to not require a reinforced
vertical tail structure, and that the aircraft has two engines.

B. Model Description

The vertical tail model has 42 free variables and 31 constraints.
Tables 5 and 6 list the free and fixed variables that appear in
constraints that are unique to the vertical tail model.

1. Vertical Tail Geometry and Structure

The variables that define geometry are illustrated in Fig. 4. The
moment arm of the vertical tail is the distance from the aircraft c.g. to
the aerodynamic center of the vertical tail, which is assumed to be at

Atan m? Engine reference area

Cp,, — —  Windmill drag coefficient
— — Maximum lift coefficient

Ltmax
Tto N Thrust per engine at takeoff
A m/s  Minimum takeoff velocity
Viand m/s  Landing velocity
Ve m/s  Never exceed velocity
PTo kg/m?  Air density at takeoff
tan(Ay,) — — Tangent of leading edge sweep (40 deg)
Cluro — —  Sectional lift force coefficient (engine out)
ey — —  Span efficiency of vertical tail
g m/s’>  Gravitational acceleration
Freq 572 Maximum required yaw rate acceleration at landing
Yeng m Engine moment arm

the quarter-chord. The moment arm is therefore upper-bounded by
the distance from the c.g. to the leading edge of the tail at the root, the
height of the mean aerodynamic chord above the fuselage, the sweep
angle, and the mean aerodynamic chord:

Ly < AXjeq,, + 25, tan(Ay,) + 0.25¢ (104)

The x coordinates of the leading and trailing edge at the root are
related by the root chord. The tail trailing edge is upper-bounded by
imposing a constraint that the tail root cannot extend beyond the end
of the fuselage. Together, these constraints put an upper bound on the

moment arm of the tail based on the length of the fuselage:

Axtrail\,l > A-xlead‘,l + Cmotvl (105)

lfuse > XcG + A)Clrail” (106)

The location of the vertical tail c.g. is also constrained
approximately using simple geometry:

1
Xcg,, = Xcc + 3 (AXead,, + AXail,,) (107)

Ax lead,, Crooty,

AXI/‘((H\;

Lfuse

Fig.4 Geometric variables of the vertical tail model (adapted from [21]).
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The vertical tail structure is sized by its maximum lift coefficient
and the never-exceed speed:

1
Ly, = szvazleSVtCLw_max (108)

The remaining geometry and structural constraints were already
introduced in the wing model. Constraints (51-55) are adapted to the
vertical tail model to constrain its geometry, with two minor
modifications. Constraint (51) can be relaxed from a signomial
equality to a signomial inequality constraint, whereas constraint (52)
needs to be implemented as a signomial equality constraint. The wing
structure model from [1] is also reused; however, given that the
vertical tail only has a half-span, the definitions of b, S, and W,
differ accordingly from those of their wing counterparts.

2. Engine-Out Condition

The first performance constraint specifies that the maximum
moment exerted by the tail must be greater than or equal to the
moment exerted by the engines in an engine-out condition,
exacerbated by the windmill drag of the engine that is inoperative [5]:

LVt,EOlv{ i Dwmyeng + TTOyeng (109)

The worst-case engine-out condition is likely to occur during
takeoff, when the velocity is lowest but the engine force required to
safely complete takeoff is highest. The force exerted by the vertical
tail in this critical low speed case is constrained by its maximum lift
coefficient, its reference area, and the minimum dynamic pressure.
As a conservative estimate, the V; speed is used because it is the
minimum speed after which a takeoff can be completed, following a
critical engine failure:

1
Lygo = P10 ViSuCr, o (110)

The wing lift coefficient is constrained by the airfoil sectional lift
coefficient using finite wing theory [28]:

Cooolt+ =0 Yoo 111
t, ﬂ,th/RW VLEO

The windmill drag can, to a first approximation, be lower-bounded
using a drag coefficient and areference area [5], in this case the area of
the engine fan:

1
Dym 2 5p10 ViAuCop,, (112)

3. Crosswind Landing Condition

The second performance constraint ensures the vertical tail can
provide adequate yaw rate acceleration in a crosswind landing, where
the moment of inertia was constrained at the system level (Sec. II). To

provide a safety margin during cross-wind landing, C;_ dine is taken
tobe 85% of Cp  :
1 ) Freq 11
EpTO VlandSVt lVl CL\'l.lzmdmg 2 1. ( 3)

4. Vertical Tail Drag

The vertical tail produces drag, regardless of the flight condition.
Neglecting any induced drag, the parasitic drag coefficient C, D, is set
by a softmax affine fit of XFOIL [24] data for the symmetric NACA
0008 through 0020 airfoils. The fit considers airfoil thickness, Mach
number, and Reynolds number. It was developed with GPfit [10,25]
and has an rms error of 1.31%:

1
Dy 2 3pVESuCo,, (114)

CBII)?? > 2.44 x 10777 (Rey) 0528 (z,,) 1338 (M) 10227
+ 0.003 (Revt)_OAIO(Tvt) 1.22 (M) 1.55
+ 1.967 x 1074(Revt)o‘zm(Tvt)iom(M)iO‘M

+ 6.590 x 10‘50(Rev1)‘0'498 (Tvl)l'SG(M)_] 14.6 (115)
V.G
Rev[ :poo oo Cvt (116)
]

V. Horizontal Tail Model

At a conceptual design level, the purpose of the horizontal tail is
threefold: to trim the aircraft such that it can fly in steady level flight,
to provide longitudinal stability, and to give the pilot pitch control
authority over a range of flight conditions.

A. Model Assumptions

The horizontal tail model assumes that the horizontal stabilizer is
mounted to the fuselage and nominally produces downforce in cruise.

B. Model Description

The horizontal tail model has 50 free variables and 33 constraints.
Tables 7 and 8 list the free and fixed variables that appear in
constraints that are unique to the horizontal tail model.

1. Horizontal Tail Geometry and Structure

The horizontal tail model employs many of the same geometric
constraints as the wing and vertical tail. More specifically, analogous
versions of constraints (51-55) and constraints (107-110) enforce
planform relationships and constrain the horizontal tail moment arm,
respectively. As with the vertical tail, constraint (52) needs to be
implemented as a signomial equality constraint. The horizontal tail
also reuses the same structural model from [1]. The variables that
define geometry are illustrated in Fig. 5.

Table7 Free variables from constraints that are unique to
the horizontal tail model (HT, horizontal tail)

Free variables  Units Description
CD% — — Horizontal tail parasitic drag coefficient
Cyp, — —  Wing lift coefficient
Ly — — Horizontal tail isolated lift curve slope
Lan — — Horizontal tail lift curve slope
Law — —  Wing lift curve slope
L — — Horizontal tail lift coefficient
— — Mach number
Rey, — — Horizontal tail Reynolds number
SM — — Stability margin
Vi — — Horizontal tail volume
AR, — — Wing aspect ratio
ARy — — Horizontal tail aspect ratio
Oy — — Horizontal tail angle of attack
Cuw m Wing mean aerodynamic chord
The — — Horizontal tail thickness/chord ratio
Meatio — — Ratio of HT and wing lift—curve slopes
Xy m Position of wing aerodynamic center
XcG m x location of c.g.

Table 8 Fixed variables from constraints that are unique to the
horizontal tail model

Constants  Units Description

— — Maximum horizontal tail lift coefficient

Lt max

Lo — — Maximum lift coefficient, wing

C ,,, — — Moment coefficient about aerodynamic center (wing)
Min — — Minimum allowed stability margin

Axcg m Center of gravity travel range

Mhe — — Tail efficiency
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Fig. 5 Geometric variables of the horizontal tail model (adapted
from [21]).

2. Trim Condition

The first sizing requirement is that the aircraft must satisfy the trim
condition [29], which implicitly requires that the full aircraft moment
coefficient be zero:

@SX_CG Cn,. . VaCr, (117)
Cy Cy CLM. CL

Thin airfoil theory is used to constrain the horizontal tail’s isolated
lift—curve slope [28].

Cp, = Cp,, an (118)

aht

However, the horizontal tail’s lift-curve slope is reduced by
downwash e from the wing and fuselage [22]. Note that 7, is the
horizontal tail sectional lift efficiency:

de
CLu.hl = CLu.hto (1 - %) Tht (119)

The downwash can be approximated as the downwash far behind
an elliptically loaded wing:

20,

~ 120
€~ — R, (120)
de 2Cy,,
— — 121
= oa nAR, 21

Thus, an additional posynomial constraint is introduced to
constrain the corrected lift—curve slope:

2¢y,,

xR,

Crom * MClpy < Clypy e (122)

3. Minimum Stability Margin
The second condition is that the aircraft must maintain a minimum
stability margin (SM) at both the forward and aft c.g. limits [29]:

Ax C
SN[min + —CG + e < Vhtmratio +

w Loy max Lo max

Vht CLhLmux

(123)

The ratio of the horizontal tail and wing lift—curve slopes, 7,
appears in Eq. (123) and is constrained using the relationship in [29].
The constraint is a signomial equality because it is not possible to
know a priori whether there will be upward or downward pressure on

Myatio*

2 2
Meratio (1 + ) =1+ — (124)

4. Stability Margin
The third condition is that the stability margin must be greater than
a minimum specified value for all intermediate c.g. locations:

SM < Tw —Yc6 (125)
Co
SM > SM,i, (126)

5. Horizontal Tail Drag

The horizontal tail employs the same drag model as the wing
[constraints (93-97)], with the exception of the parasitic drag
coefficient fit. The wing’s parasitic drag fit [Eq. (92)] is replaced by a
fit to XFOIL [24] data for the TASOPT [5] T-series airfoils. The
TASOPT T-series airfoils are horizontal tail airfoils intended for
transonic use. The fit considers airfoil thickness, Reynolds number,
and Mach number. The softmax affine function fit is developed with
GPfit [10,25] and has an rms error of 1.14%:

C%;w > 5.288 x 10—20 (Reht)O.QOl (Tht)0.912(M)8.645
ht

+ 1.676 X 10728 (Rey, )25 (2,)6292 (M) 10256
+7.098 x 10725 (Rey,) 395 (z,) 962 (M) 0567

13731 x 1074 (Rep, )25 () 128 (M) 0448

4 1.443 X 10712 (Rey, )91 (1, ) 4663 (M) 7689 (127)

VI. Fuselage Model

At a high level, the purpose of a conventional commercial aircraft
fuselage can be decomposed into two primary functions: integrating
and connecting all of the subsystems (e.g., wing, tail, landing gear)
and carrying the payload, which typically consists of passengers,
luggage, and sometimes cargo. The design of the fuselage is therefore
coupled with virtually every aircraft subsystem.

Drela [3] performs a detailed analysis of fuselage structure and
weight, considering pressure loads, torsion loads, bending loads,
buoyancy weight, window weight, payload-proportional weights, the
floor, and the tail cone. The majority of the constraints in this model
are adapted directly from these equations.

A. Model Assumptions

This model assumes a single circular-cross-section fuselage. The
floor structural model and the horizontal bending model assume
uniform floor loading. The model leverages the analytical bending
models from Drela [5], which makes assumptions about symmetry in
bending loads. Shell buckling is not explicitly modeled while
designing bending structure but is accounted for by the
implementation of a lower yield stress for bending reinforcement
material relative to the nominal yield stress of the material.

B. Model Description

The fuselage model has 84 free variables and 96 constraints.
Tables 9 and 10 list the model’s free and fixed variables, respectively.
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Table 9 Free variables in the fuselage model

Table 9 (Continued.)

Free
variables Units Description
Aon m? Horizontal bending area constant Ay,
Alngy m Horizontal bending area constant A;;, (landing case)
Unnair m Horizontal bending area constant A;, (maximum aero
load case)
Adhyoa — — Horizontal bending area constant A,;, (landing case)
Dhgur — — Horizontal bending area constant A,;, (maximum aero
load case)
Afoor m? Floor beam cross-sectional area
Afuse m? Fuselage cross-sectional area
Albendby g m? Horizontal bending area at rear wing box
(landing case)
Abendby m? Horizontal bending area at rear wing box (maximum
aero load case)
Abendf m? Horizontal bending area at front wing box
(landing case)
Apbendfyr m? Horizontal bending area at front wing box (maximum
aero load case)
Askin m? Skin cross-sectional area
Avbend, m? Vertical bending material area at rear wing box
By, m? Vertical bending area constant By,
By, m Vertical bending area constant B,
Cpi — — Fuselage drag coefficient
fuse N Fuselage drag
Ly m* Shell horizontal bending inertia
. m*  Shell vertical bending inertia
Bt N Horizontal tail maximum load
Vigs N Vertical tail maximum load
— —  Cruise Mach number
Miioor N-m Maximum bending moment in floor beams
Piioor N Distributed floor load
Riuse m Fuselage radius
Shulk m?  Bulkhead surface area
Stloor N Maximum shear in floor beams
Shose m? Nose surface area
© m/s  Cruise velocity
Viulk m?  Bulkhead skin volume
V cabin m?>  Cabin volume
V cone m3 Cone skin volume
oyl m?  Cylinder skin volume
Vitoor m?>  Floor volume
Viibend, m? Horizontal bending material volume b
V ibend, m3 Horizontal bending material volume ¢
V ibend, m? Horizontal bending material volume f
V ibend m? Horizontal bending material volume
Vnose m?  Nose skin volume
V ubend, m? Vertical bending material volume b
V bend, m? Vertical bending material volume ¢
V sbend m3  Vertical bending material volume
apu Ibf  APU weight
Wiy Ibf  Buoyancy weight
cone Ibf Cone weight
Wiioor Ibf  Floor weight
Wiuse Ibf Fuselage weight
W ibend Ibf Horizontal bending material weight
Whe Ibf  Horizontal tail weight
Winsul Ibf  Insulation material weight
W add Ibf  Miscellaneous weights (galley, toilets, doors, etc.)
pay Ibf  Payload weight
Weats Ibf Seating weight
W shell Ibf  Shell weight
skin Ibf  Skin weight
W sbend Ibf Vertical bending material weight
vt Ibf  Vertical tail weight
W window Ibf Window weight
Poo kg/m>  Freestream density
Peabin kg/m?  Cabin air density
oy N/m?  Axial stress in skin
Oum, N/m?  Horizontal bending material stress
Oum, N/m?  Vertical bending material stress
oy N/m?  Skin hoop stress
Teone N/m?  Shear stress in tail cone
vt m Vertical tail half-span
co m Root chord of the wing
Niyse m Fuselage height

Free
variables Units Description
Leone m Cone length
floor m Floor length
Lfuse m Fuselage length
Lipent m Shell length
Nrows — —  Number of rows
Ngeat — — Number of seats
Pwt — —  Dummy variable (1 + 24,;)
Lshell m Shell thickness
tekin m Skin thickness
Weloor m Floor half-width
Wiyse m Fuselage width
Xp m x location of back of wing box
xf m x location of front of wing box
Xhbendy g ft Horizontal zero bending location (landing case)
Xhbendyy ft Horizontal zero bending location (maximum aero load
case)
Xghelll m Start of cylinder section
Xghell2 m End of cylinder section
Xeail m x location of tail
Xup m x location of fuselage upsweep point
Xybend ft Vertical zero bending location
Xwing m x location of wing c/4
Table 10  Fixed variables in the fuselage model
Constants _ Units Description
Miysep — —  Fuselage drag reference Mach number
Niand — —  Emergency landing load factor
Niige — —  Wing maximum load factor
R J/kg-K Air specific heat
T cabin K Cabin air temperature
foor N/m?  Floor weight per unit area
el N/m?  Insulation material weight per unit area
window N/m  Window weight per unit length
ave.pass Ibf Average passenger weight, including luggage
fix Ibf Fixed weights (pilots, cockpit seats, navcom)
seat N Weight per seat
AP gyer psi Cabin overpressure
Acone — —  Tailcone radius taper ratio
Poend kg/m?  Stringer density
Peone kg/m?  Cone material density
Plloor kg/m?  Floor material density
Pskin kg/m?  Skin density
Ohend N/m?  Bending material stress
Ofloor N/m?>  Maximum allowable floor stress
Ogkin N/m?  Maximum allowable skin stress
Tfloor N/m?  Maximum allowable shear web stress
Sapu — —  APU weight as fraction of payload weight
Sradd — —  Fractional added weight of local reinforcements
[ frame — —  Fractional frame weight
padd — —  Other misc weight as fraction of payload weight
S string — —  Fractional stringer weight
g m/s>  Acceleration due to gravity
Rfigor m Floor beam height
hose m Nose length
Tpass — —  Number of passengers
Rgpr — —  Number of seats per row
Ds cm Seat pitch
Peabin N/m?>  Cabin air pressure
re — — Ratio of stringer/skin moduli
'm, — —  Horizontal inertial relief factor
I, — —  Vertical inertial relief factor
Twje — —  Wing box width-to-chord ratio
Waisle m Aisle width
Weeat m Seat width
Wiys m Width between cabin and skin for systems
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1. Cross-Sectional Geometry

The variables that define geometry are illustrated in Figs. 6 and 7.
The fuselage must be wide enough to accommodate the width of the
seats in a row and the width of the aisle:

Wyse = nsprwseat + Waigle + Zwsys (128)

The cross-sectional area of the fuselage skin is lower-bounded
using a thin-walled cylinder assumption:

Agkin 2 2R e ekin (129)

The cross-sectional area of the fuselage is lower-bounded using the
radius of the fuselage:

Apuse = 7TRZ (130)

2. Pressure Loading

The axial and hoop stresses in the fuselage skin are constrained by
the pressurization load due to the difference between cabin pressure and
ambient pressure at cruise altitude. The thickness of the skin is therefore
sized by the maximum allowable stress of the chosen material:

— APover Rfuse

oy (131)
2 fgpen
R
Og = APover[—me (132)
skin
Xyving by
ETERED > Xail |

Cut

buose Lypen Leone
Xshelly » Xup

T
Xshelly

Luse
Fig. 6 Geometric variables of the fuselage model (adapted from [21]).

Wseat Wsys

-— =

I h floor

/ hhota

—

Waisle

Weloor

Wfuse (=hfuse = 2Rfua'e)
Fig. 7 Geometric variables (cross section) of the fuselage model
(adapted from [21]).

Okin i Ox (133)

Ogin 2 Op (134)

3. Floor Loading

The floor must be designed to withstand at least the weight of the
payload and seats multiplied by a safety factor for an emergency
landing:

Pﬂoor 2 Nland(Wpay + Wseats) (135)

The maximum moment and shear in the floor are determined based
on this design load and the width of the floor, assuming that the floor/
wall joints are pinned and there are no center supports:

P
N floor = % ( 1 36)
P
Mﬂoor — ﬂoorswﬂoor ( 1 37)

The floor beam cross-sectional area is constrained by the
maximum allowable cap stress and shear web stress for the beams:

S M,
Aﬂoor >15 floor +2 floor

Ttloor Gﬂoorhﬂoor

(138)

4. Shell Geometry

The cylindrical shell of the fuselage sits between the nose and
tailcone. The variables xg.;;; and x> define the beginning and end
of the cylindrical section of the fuselage, respectively, in the aircraft
X axis:

Xshelll = lnose (139)
Xshell2 b lnosc + lshcll (]40)

The number of seats is equal to the product of the seats per row and
the number of rows. Note that noninteger numbers of rows are
allowed and necessary for GP compatibility. It is assumed that the
load factor is 1, so that the number of passengers is equal to the
number of seats:

Nseat = Tsprltrows (141)

Npass = Mseat (142)

The seat pitch and the number of rows of seats constrain the length
of the shell. The floor length is lower-bounded by the shell length and
twice the fuselage radius, to account for the space provided by
pressure bulkheads:

lshell i Nrows Ps (143)

lﬂoor > 2Rfuse + lshell (144)

The length of the fuselage is constrained by the sum of the nose,
shell, and tail cone lengths. A signomial equality is needed because
increased fuselage length results in improved tail control authority:

lfuse = lnose + lshell + lcone (]45)
Other locations to constrain are the wing midchord and the wing-

box fore and aft bulkheads, which serve as integration limits when
calculating bending loads:
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Xp < Xying + 0‘5c0rw/c (146)

Xp +0.5¢07/c 2 Xying (147)

The skin surface area and, in turn, skin volume for the nose, main
cabin, and rear bulkhead are constrained. The surface area of the nose,
which is approximated as an ellipse, is lower-bounded using
Cantrell’s approximation [3]:

12 (e \¥°
%seZ(z”R%use)g/s( +—(ﬁ) ) (148)

37 3 \Rpe
Stulk = ZﬂR%use (149)
Veyl = Askinlshen (150)
Viose = Snoselskin 1s1)
Viuik = Spuikfskin (152)

The cabin volume, necessary for capturing buoyancy weight, is
constrained assuming a cylinder with hemispherical end caps:

2 2
Vcabin b Afuse (§ lnose + lshell + §Rfuse) (153)

5. Tail Cone

The tail cone needs to be able to transfer the loads exerted on the
vertical tail to the rest of the fuselage. The maximum torsion moment
imparted by the vertical tail, Q, depends on the maximum force
exerted on the tail as well as its span and taper ratio, A,,. This torsion
moment, along with the cone cross-sectional area and the maximum
shear stress of the cone material, bounds the necessary cone skin
thickness. The cone cross-sectional area, which varies along the cone,
is coarsely approximated to be the fuselage cross-sectional area
(i.e., the cross-sectional area of the cone base):

LVt th 1 + 2j'vl
= Vo VT ~owt 154
Ou T (154)
O
feone = =———— 155
cone 2AfuseTcone ( )

The volume of the cone is a definite integral from the base to the tip
of the cone. This integral is evaluated [5] and combined with
Eqgs. (154) and (155) to give a single signomial constraint on the cone
skin volume:

144 )4
RiuseTeone (1 + Py) Veone €N > Ly, by (156)

7 = byt Pvt T
4lcone max 3

A change of variables is used for compatibility with the tail
model, which uses p,, = 1 + 24,, to make a structural constraint
GP-compatible.

The cone skin shear stress is constrained to equal the maximum
allowable stress in the skin material:

Tcone = Oskin ( 157)

The tail cone taper ratio constrains the length of the cone relative to
the radius of the fuselage:

R
leone = T (158)

ACOI’IE

6. Fuselage Area Moment of Inertia

The fuselage shell consists of the skin and stringers. Its area
moment of inertia determines how effectively the fuselage is able to
resist bending loads. A shell with uniform skin thickness and stringer
density has a constant area moment of inertia in both of its
bending axes.

To be consistent with [3], the horizontal bending moments are
defined as the moments around the aircraft’s y axis, caused by
horizontal tail loads and fuselage inertial loads, and vertical bending
moments are defined as the moments around the aircraft’s z axis,
caused by vertical tail loads.

The effective modulus-weight shell thickness is lower-bounded by
assuming that only the skin and stringers contribute to bending. This
constraint also uses an assumed fractional weight of stringers that
scales with the thickness of the skin:

Pski
Tshell = Tskin (1 + fslringrE pi 1n) (159)

bend

It is important to consider the effects of pressurization on the yield
strength of the bending material. Because pressurization stresses the
airframe, the actual yield strength of the fuselage bending material is
lower than its nominal yield strength, an effect captured using
posynomial constraints:

APoveeruse

— <L 160
Oy, +TE TR Obend (160)

APoveeruqe

——< 161
ou, + g e S Obend (161)

The aircraft shell, which is composed of the pressurized skin and
stringers, must satisfy the following horizontal and vertical area
moment of inertia constraints:

Ishenn < TR} o Fanen (162)
Lyshent < TR} (o Tshen (163)

7. Horizontal Bending Model

There are two load cases that determine the required horizontal
bending material (HBM): maximum load factor (MLF) at V., where

N = Nyig (164)

Ly = Ly, (165)
and emergency landing impact, where

N = Nigna (166)

Ly=0 (167)

Both load cases are considered at the aircraft’s maximum takeoff
weight. The constraints for each case are distinguished by the
subscripts “MLF” and “land”. Assuming that the fuselage weight is
uniformly distributed throughout the shell, the bending loads due to
fuselage inertial loads increase quadratically from the ends of the
fuselage shell to the aircraft c.g., as shown by the line representing
M, (x) in Fig. 8. The tail loads are point loads at x,;;, so the horizontal
tail moment increases linearly from x,; to the aircraft’s c.g. In the
maximum load factor case, the maximum moment exerted by the
horizontal tail is superimposed on the maximum fuselage inertial
moment at load factor Ny to size the HBM required. For the
emergency landing impact case, only the fuselage inertial loads are
considered at Ny,,4, assuming an unloaded horizontal tail.
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Fig.8 TASOPT fuselage bending models (from [5]). The top graph shows the bending load distribution on the fuselage, whereas the bottom graph shows

the area moment of inertia distribution.

Several intermediate variables are introduced and used in
constraints that capture HBM relationships. Ay, represents the HBM
area that is contributed by the aircraft shell:

(168)

Variables Ay, and Ay, are the HBM lengths that are required
to sustain bending loads from the tail. Note that as the distance from
the tail increases, the moment exerted from the tail increases linearly:
th + Wht + Wapu

Alny s 2 Niana P
useOM,

(169)

th + Wht + Wapu + rM;,th

hfuse oy "

Alhyr = Niie - (170)

Variables A,;,  and Ay, represent the HBM required to sustain
the distributed loads in the fuselage. As the distance from the nose or
the tail increases, the moment exerted due to the distributed load
grows with the square of length:

N land

AZhLa“d > 2] n o (Wpay + Wpadd + Wshell + Wwindow
shell *fuse © bend
+ Winsul + Wﬂoor + Wseals) (171)
A > Niige W W W W
2hmr = 21 . th o ( pay + padd + Wanet + Wiindow
shell*fuse© M,
+ Winsul + Wﬂoor + Wseats) (172)

Bending reinforcement material in the aircraft exists where the
shell inertia is insufficient to sustain the local bending moment.
Constraints are used to determine the location over the rear fuselage
Xppend, forward of which additional HBM is required. Some simple
constraints on geometry are added to ensure a meaningful solution.
Constraints (173-180) apply for both load cases in the model (with
subscript ¢ replaced by “MLF” or “land”):

Ao = A, (Xsherz = Xnbend,)” + A, (Krait = Xribena,) (173)

xhbendg Ed Xwing (174)

xhbendg < lfuse (175)

To be able to constrain the volume of HBM required, the area
of HBM required must be constrained and integrated over the length
of the fuselage. As shown by [5], with some conservative
approximation, the volume of HBM may be determined through the
integration of the forward and rear wing box HBM areas over the rear
fuselage:

Apbends; = Axp, (Xgnetz = %)* + Ay, (Xt = xp) = Ay (176)

Apbends; = Ao, (Xgherz = %5)° + Ay, (Xt = %) = Ay (177)

HBM volumes forward, over, and behind the wing box are lower-
bounded by the integration of the HBM areas over the three fuselage
sections:

Agpy, 3 3
Vipend, 2 3 ((xsheuz = x7)” = (Xshem2 = xhbendg)‘ )
App,
+ T ((Xmu —xp)? = (X1 — xhbendg)z)
= Ao (Xhbend, — X5) (178)
Aoy,
Vhbcnd,, > T ((Xshcuz - Xb)3 = (Xshem2 — xhbcnd5)3)
Atp,
+ T ((Xlail = )% = (Xail = xhbendg)z)
= Ao (Xhbend, — Xp) (179)
Vivend, = 0-5(Anvendy, + Anbends, ) CoTw/c (130)

The total HBM volume is lower-bounded by the sum of the
volumes of HBM required in each fuselage section:

Vivend 2 Vivend, T Vibend, T Vibend, (181)
8. Vertical Bending Model

The vertical bending material (VBM) is constrained by
considering the maximum vertical tail loads that a fuselage must
sustain. The vertical bending moment, shown as M, (x) in Fig. 8,
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increases linearly from the tail to the aircraft c.g. because the tail liftis
assumed to be a point force.

As with horizontal bending, several intermediate variables are
introduced and used in constraints that capture VBM relationships.
By, is the VBM length required to sustain the maximum vertical tail
load L, . When multiplied by the moment arm of the tail relative to
the fuselage cross-sectional location, it gives the local VBM area
required to sustain the loads:

L
— er Vimax (182)

Bl —_
v
RfuseUMv

By, is the equivalent VBM area provided by the fuselage shell:

Tishen
By, = 25 (183)
' rER%use

Xybend 18 the location where the vertical bending moment of the
inertia of the fuselage is exactly enough to sustain the maximum
vertical bending loads from the tail, expressed by a signomial
equality:

B()v = Blv(xtail - vaend) (184)
Xybend 2 Xwing (185)
Xybend < lfuse (186)

Behind this point, no additional VBM is required.

The VBM area required at the rear of the wing box is lower-
bounded by the tail bending moment area minus the shell vertical
bending moment area:

Avbend,, b Blv (xlail - xb) - B()v (187)
The vertical bending volume aft of the wing box is then constrained

by integrating A e,q over the rear fuselage, which yields the
following constraint:

Vbend, = 0.5B1,((Xiait = X5)* = (Xtait = Xubena)>) = Bow(Xubend — X5)

(188)

The vertical bending volume over the wing box is the average of

the bending area required in the front and back of the wing box.

Because no vertical bending reinforcement is required in the forward
fuselage, the resulting constraint is simply:

vaendL > O‘SAvbendb Colw/c (189)

The total vertical bending reinforcement volume is the sum of the
volumes over the wing box and the rear fuselage:

vaend 2 vaend,, + vaend,‘ (190)

9. Fuselage Weight

The total weight of the fuselage is lower-bounded by the sum of all
of the constituent weights:

quse > Wapu + Wcone + Wﬂoor + thend + Wvbend + Winsul
+ Wpadd + Wseals + Wshell + Wwindow + Wfix (191)

The weight of the fuselage skin is the product of the skin volumes
(bulkhead, cylindrical shell, and nosecone) and the skin density:

Wskin i psking(vbulk + chl + Vnose) (]92)

The weight of the fuselage shell is then constrained by accounting
for the weights of the frame, stringers, and other structural components,
all of which are assumed to scale with the weight of the skin:

Wshell d Wskin(l + ffudd + fframe + string) (193)

The weight of the floor is lower-bounded by the density of the floor
beams multiplied by the floor beam volume, in addition to an assumed
weight/area density for planking:

Vﬂoor > Aﬂoor Wiloor ( 194)

Wﬂoor Z Vﬂoorp floor& + Wﬁﬁ,or l floor Wfloor ( 1 95)

As with the shell, the tail cone weight is bounded using assumed
proportional weights for additional structural elements, stringers, and
frames:

Wcone > pconegvcone(l + ffadd + fframe + fstring) (196)

The weight of the horizontal/vertical bending material is a product of
the bending material density and the HBM/VBM volume required

Wibend 2 Pend& V hbend (197)

Wvbend b pbendgvvbend (198)

The window and insulation weights are lower-bounded using
assumed weight-per-length and weight-per-area densities, respectively.
It is assumed that only the passenger compartment of the cabin is
insulated and that the passenger compartment cross-sectional area is
approximately 55% of the fuselage cross-sectional area:

Wwindow = W\:Vindow l shell ( 199)

Winsul > Wi/n/gul (O-SS(Sbulk + Snose) + l-lﬂRfuselshell) (200)

The auxiliary power unit (APU) and other payload proportional

weights are accounted for using weight fractions. W ,,4q includes flight

attendants, food, galleys, toilets, furnishing, doors, lighting, air

conditioning, and in-flight entertainment systems. The total seat weight
is a product of the weight per seat and the number of seats:

Wapu = Wpayf apu (201)
Wpadd = Wpayf padd (202)
Weeats = Wseatlseat (203)

The effective buoyancy weight of the aircraft is constrained using a
specified cabin pressure p ., the ideal gas law, and the approximated
cabin volume. A conservative approximation for the buoyancy weight
that does not subtract the ambient air density from the cabin air density
is used:

Pcabin
abin = 204
Pcabin RTcabin ( )
W buoy = Peabin&V cabin (205)

The fixed weight Wy, incorporates pilots, cockpit windows, cockpit
seats, flight instrumentation, and navigation and communication
equipment, which are expected to be roughly the same for all aircraft
[3]. The payload weight is bounded using an average weight per
passenger, which includes luggage:

Wpﬂy 2 Wavg.passnpass (206)
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10.  Fuselage Drag

The drag of the fuselage is constrained using Cp,  from TASOPT,
which calculates the drag using a pseudoaxisymmetric viscous/
inviscid calculation, and scaling appropriately by fuselage dimensions
and Mach number:

T M2
Dfuse = zpoo Voo CDfuse lfuseRfuse M2— (207)
fuseD

VII. Landing-Gear Model

The purpose of the landing gear is to support the weight of the
aircraft and allow it to maneuver while it is on the ground, including
during taxi, takeoff, and landing. Including the landing gear in
aircraft MDO is important, not only because it typically weighs
between 3 and 6% of the maximum aircraft takeoff weight [30], but
also because of how coupled its design is to other subsystems,
particularly the fuselage, wings, and engines. The landing-gear
geometry is constrained by wing position, engine clearance, takeoff
rotation, and tip-over criteria. In addition to being able to withstand
nominal static and dynamic loads, the landing gear also needs to be
able to absorb touchdown shock loads. These loads and the required
geometry determine the weight of the gear. Many of the constraints
imposed on landing-gear design are described in [30,31].

A. Model Assumptions

The landing-gear model assumes a conventional and retractable
tricycle landing-gear configuration for narrowbody commercial
aircraft such as a Boeing 737-800. The nose gear consists of a single
strut supported by two wheels. The main gear consists of two struts
mounted in the inboard section of the wings, each supported by two
wheels. The model only takes one c.g. location as an input (i.e., it
does not consider c.g. travel). It is also assumed that the main landing
gear retracts toward the centerline of the aircraft, rotating about the
X axis.

B. Model Description

The landing-gear model has 46 free variables and 54 constraints.
Tables 11 and 12 list the model’s free and fixed variables,
respectively. The variables that define geometry are illustrated
in Fig. 9.

1. Landing-Gear Position

The landing-gear track and base are defined relative to the x and y
coordinates of the nose and main gear:

T =2y, (208)

Xy =X, +B (209)

The geometric relationships between the x coordinates of the main
gear, nose gear, and the c.g. position must be enforced. These
relationships are

X, + Ax, = xcg (210)

Xcg + Axm = Xm (21 1)

Equations (210) and (211) must be satisfied exactly, meaning that
the constraints that enforce them must be tight. As will be shown later,
the load through the nose gear and main gear is proportional to the
distance from the c.g. to the main and nose gear, respectively.
Because there is downward pressure on these loads (more load
generally means heavier landing gear), there is also downward
pressure on the distances Ax, and Ax,. Therefore, signomial
constraints are used for both relationships:

X, + Ax, > xcg (212)

Table11 Free variablesin the landing-gear model (KE, kinetic energy)

Free variables  Units Description

B m Landing-gear base

Eland J Maximum kinetic energy to be absorbed in landing
F,, — —  Weight factor (main)

Fy, — —  Weight factor (nose)

1, m*  Area moment of inertia (main strut)

1, m*  Area moment of inertia (nose strut)

L, N Maximum static load through main gear

L, N Minimum static load through nose gear

Ly, N Dynamic braking load, nose gear

L,, N Static load per wheel (main)

L,, N Static load per wheel (nose)

Sa m Stroke of the shock absorber

T m Main landing-gear track

Wi Ibf  Weight of landing gear

W max Ibf  Maximum aircraft weight

Wine Ibf  Weight of main gear

W ns Ibf ~ Weight of main struts

Winw Ibf ~ Weight of main wheels (per strut)

Wie Ibf  Weight of nose gear

W Ibf  Weight of nose strut

Wow Ibf ~ Weight of nose wheels (total)

Woam Ibf ~ Wheel assembly weight for single main gear wheel
W wan Ibf ~ Wheel assembly weight for single nose gear wheel
Ax,, m Distance between main gear and c.g.

Ax, m Distance between nose gear and c.g.

tan(¢) — —  Angle between main gear and c.g.

tan(y) — — Tip over angle

dhacelle m Nacelle diameter

doieo m Diameter of oleo shock absorber
d,, in.  Diameter of main gear tires

d, in.  Diameter of nose gear tires

L m Length of main gear

1, m Length of nose gear

Loico m Length of oleo shock absorber

T m Radius of main gear struts

r, m Radius of nose gear struts

L m Thickness of main gear strut wall

t, m Thickness of nose gear strut wall
w, m Width of main tires

w, m Width of nose tires

XcG m x location of c.g.

X m x location of main gear

Xp m  x location of nose gear

Xup m x location of fuselage upsweep point
Vi m y location of main gear (symmetric)

Table 12  Fixed variables in the landing-gear model

Constants ~ Units Description
E GPa  Modulus of elasticity, 4340 steel
K — —  Column effective length factor
N, — —  Factor of safety
s — — Shock absorber efficiency
MG — — Ratio of max to static load
Pst kg/m3  Density of 4340 steel
oy, Pa Compressive yield strength 4340 steel
tan(y) — — Dihedral angle
tan(¢nin) — — Lower bound on ¢
tan(Wn.x) —— Upper bound on y
tan(@.x) —— Maximum rotation angle
dian m Fan diameter
Sfadd.m — — Proportional added weight, main
Sfaddon — — Proportional added weight, nose
g m/s?>  Gravitational acceleration
Npold m Hold height
nacelle m Minimum nacelle clearance
Mg — — Number of main gear struts
Typs — —  Number of wheels per strut
Doleo psi Oleo pressure
thacelle Nacelle thickness

m
Wy ft/s  Ultimate velocity of descent

Yeng m Spanwise location of engines
2cG m Center of gravity height relative to bottom of fuselage
Zwing m Height of wing relative to base of fuselage
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Fig.9 Geometric variables of the landing-gear model (adapted from [21]).

Xcg + Ax,, > X, (213)

The main gear position in the spanwise (y) direction is, on one side,
lower-bounded by the length of the gear itself and, on the other side,
upper-bounded by the spanwise location of the engines. Both of these
constraints are necessary to allow the landing gear to retract in the
conventional manner for typical narrowbody commercial aircraft:

Y =l (214)
Ym < Yeng (215)

2. Wing Vertical Position and Engine Clearance

The difference between the lengths of the main gear and nose gear
is constrained by the vertical position of the wing with respect to the
bottom of the fuselage as well as the spanwise location of the main
gear and the wing dihedral. This relationship is a signomial
constraint:

Ly + Zwing + Y tan(y) = 1, (216)

For aircraft with engines mounted under the wing, the length of the
main gear is also constrained by the engine diameter because the
engines must have sufficient clearance from the ground. A signomial

constraint provides another lower bound on the length of the main
gear:

lm + (yeng - ym) tan(]’) > dnacelle + hnacelle (217)

dnacelle d dfan + 2lnacelle (218)

3. Takeoff Rotation

The aircraft must be able to rotate on its main wheels at takeoff
without striking the tail of the fuselage and, similarly, must be able to
land on its main gear without striking the tail [31]. This constrains the
location of the main gear. More specifically, the horizontal distance
between the main gear and the point at which the fuselage sweeps up
toward the tail must be sufficiently small, relative to the length of the
main gear, such that the angle relative to the horizontal from the main
wheels to the upsweep point is greater than the takeoff/landing
angles. The result is a signomial constraint that imposes a lower
bound on the length of the gear and the x location of the main gear:

l

— > Xy — X 219
an (O > 7" @19

4. Tip-Over Criteria

A longitudinal tip-over criterion requires that the line between the
main gear and the c.g. be at least 15 deg relative to the vertical such
that the aircraft will not tip back on its tail at a maximum nose-up
attitude [31]. This puts a lower bound on the x location of the main
gear, as measured from the nose of the aircraft. Note that tan(¢) is
a design variable here, instead of ¢, to make the constraint
SP-compatible:

Xy 2 (Ly + zco) tan(@) + xcg (220)

tan(¢) > tan(qsmin) (221)

A lateral tip-over constraint is introduced to ensure that an aircraft
does not tip over in a turn [30]. The turnover angle is defined as

2+l
t = 222
anwy Ax, siné (222)
where
tan§ = 22 (223)
B

Using the relationship

Ym B
cos| arctan| — = — (224)
( (B ) ) VB +yZ

this constraint can be rewritten in not only SP-compatible but
GP-compatible form as:

> (ZCG + lm)z(ygn + BZ)

(Bxpy tan(y))? (229)

Typically, this angle y should be no larger than 63 deg [31]:

tan(y) < tan(ymax) (226)

5. Landing-Gear Weight
The total landing-gear system weight is lower-bounded by
accounting for the weights of each assembly. An additional weight

fraction is used to account for weight that is proportional to the weight
of the wheels [32]:

Wig = W + Wy (227)
ng > nmg(Wms + me(l + faddm)) (228)
an > Wns + an(l + fadd,l) (229)
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The weight of each strut for both the main and nose struts is
lower-bounded by simplistically assuming a thin-walled cylinder
with constant cross-sectional area:

Wing 2 228ty lnpsig (230)

Wns Z 2ﬂrntnlnpstg (231)

Itis assumed that the strut is sized by compressive yield and (more
stringently) by buckling, again assuming a thin-walled cylinder. This
constrains the area moment of inertia of the strut cross section, which
puts upward pressure on the radius and thickness of the struts. The
buckling constraint assumes that no side force is exerted on the
cylinder, which is perhaps a weak assumption due to forces exerted in
braking, for example, and due to the fact that aircraft do not typically
land with the main gear struts perfectly normal to the runway surface:

j'LGLm]vs

277 10y, 2 (232)
g

27r,t,6y, 2 (L, + Lndyn)Ns (233)
72El,

L, < Kzlzn (234)

I, = arit, (235)
n2El

L, < " 236

N (236)

I, =nrit, (237)

A machining constraint is used to ensure that the strut walls are not
too thin to be fabricated [30]:

~n <40 (238)
2
t’" <40 (239)

The wheel weights can be estimated using historical relations from
[31,32], which are again conveniently in monomial form:

me = anSWWa,m (240)
WHW = nWPSWWZI.n (241)
Waam = 1.2F2;i°9 (242)
Fym = Ly, d,, (243)
Ly
me — ﬁ (244)
mg’ twps
Woan = 1.2F050 (245)
Fyn =Ly, d,, (246)
L
Ly, =— (247)
Nyps

Main gear tire size can also be estimated using statistical relations.
The nose gear tires are assumed to be 80% of the size of the main gear
tires:

d, =1.63L%" (248)
w, = 0.104L%40 (249)
d, =08d, (250)
w, = 0.8w, (251)

In addition, simple retraction space constraints are used to ensure
that the gear assemblies are not too wide to fit inside the fuselage:

2w, +2r, < hpoq (252)

2w, +2r, <08 m (253)

6. Landing-Gear Loads

The maximum static loads through the nose and main gear are
constrained by the weight of the aircraft and the relative distances
from the c.g. to the main and nose gear, respectively:

oA
L, = YuwsBn (254)
B
A
L, = Lma; i (255)

For the nose gear, there is an additional dynamic load due to the
braking condition. A typical braking deceleration of 3 m/s? is
assumed [31]:

lm + Zcg

Ly 2 031 W ™

apn (256)

The nose gear requires adequate load for satisfactory steering
performance. A typical desirable range is between 5 and 20% of the
total load [31]:

Fuselage

Vertical Tail

Horizontal Tail Landing Gear

Fig. 10 Illustration showing the extent of coupling between the
subsystem models, and the variables that directly couple them.
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L 5 005 (257)
Wmax

L

"<02 258
< (258)

7. Shock Absorption

Oleo-pneumatic shock absorbers are common to landing gear for
large aircraft. Their purpose is to reduce the vertical load on the
aircraft at touchdown, and they are typically sized by a hard landing
condition. The maximum stroke of the shock absorber can be
determined by considering the aircraft’s kinetic energy and the target
maximum load [27]:

W..
Ejgna > 2";* wiy (259)

1076 J
1070» 4
1064» 4
1058» 4
1052’ J
1046» 4
1040» 4
1034» 4
1028’ 4
1022» 4
1016» 4
1010» J

10* L
1 2 3 4 5 6 7

GP Iteration

Total Cost

a) Total cost vs GP iteration
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Fuel Burn Cost Contribution

S = 1 Eland
sa — 7 .
s Lm;LLG

(260)

As a preliminary model, the oleo size can be estimated using
historical relations that are conveniently in monomial form [31]. The
length of the main gear must be greater than the length of the oleo and
the radius of the tires:

loleo = 2.58,

4 gL, /n
oo = 13, [0 g
Poleo”

d,,
lm > loleo + 2

42000 T T T
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30000+

28000 . . .
3 5
GP lteration

b) Cost contribution of fuel burn for GP iterations with
no relaxed constants. Since all slack variables are equal to
one, the fuel burn cost contribution is equivalent to

total cost

Slack Variables Cost Contribution
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¢) Cost contribution of slack variables and fuel burn vs GP iteration

Fig. 11 Plots illustrating the convergence of the objective function.
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VIII. Model Solution

Combining all of the previously described system and subsystem
models into a single full-aircraft optimization problem allows us to
capture the coupled nature of aircraft design. From a practical
perspective, the procedure of combining the subsystem models is
relatively straightforward because, as mentioned previously, each
model is fundamentally just a list of constraints. Coupling models
essentially just involves concatenating these lists.

The free variables that directly couple two or more of the
subsystem models are illustrated in Fig. 10.

A. Solution Time

The size of the full-system model and therefore its solution time
depends on the number of discretizations of the Breguet range model.
With two cruise segments, the SP has 824 free variables and takes
seven GP solves to converge in a time of 6.2 s, using a standard laptop
computer with a 2.5 GHz Intel Core i7 processor.

B. Convergence of the Objective Function

Convergence of the objective function [Eq. (19)] is plotted in
Fig. 11a. The total cost can be decomposed into a contribution from
slack variables and a contribution from fuel burn. These
decompositions are plotted in Fig. 1lc. The fuel burn cost
contribution for GP iterations three through seven is plotted in
Fig. 11b, where it is equivalent to the total cost because all slack
variables are equal to 1 after the second GP iteration.

C. Solution Comparison to the Reference Aircraft

The optimal values for a selection of key design variables are
presented in Table 13. Discrepancies between computed values and
reference aircraft values are largely due to the placeholder engine
model, lack of a detailed flight profile, and the lack of a climb flight
condition, which particularly affects the sizing of the horizontal tail.
Both a detailed engine and flight profile model are the subject of
ongoing work. Additionally, total fuel burn is minimized in the
presented work, whereas an aircraft manufacturer likely optimizes a
more nuanced objective function, including manufacturing cost,
maintainability, and the ability to stretch the aircraft in the future. This
likely contributes to the discrepancy between the presented values.
The ability of the SP aircraft model to robustly solve for alternate
objective functions is discussed in future work.

D. Sensitivity to Initial Guess

Asmentioned in Sec. I, signomial programs require an initial guess
for the subset of variables that appear either on the greater side of
signomial inequality constraints or in signomial equality constraints.
The solution was obtained using an initial guess of one for each of
these variables. To see how sensitive this solution is to the choice of
initial guess, the problem was also solved using an order-of-
magnitude initial guess for each variable. Using the better initial
guess did not change the solution values and only slightly reduced the
solution time (less than 0.1 s), largely because any speed increases are
mostly limited to the first GP solve, which constitutes a small portion
of total solve time.

E. Sensitivity to Fixed Parameters

The sensitivity of the objective function to each parameter is
obtained from the problem’s dual solution, at no additional
computational cost. Intuitively, the sensitivity is an estimate of the
percentage change in the objective value with a 1% change in the
value of the parameter. Select sensitivities are presented in Table 14.

At the optimal solution, the objective function is, perhaps
unsurprisingly, sensitive to minimum cruise Mach number M,
(0.530) and the range requirement Ry, (1.23). The sensitivity to
W ave passy 1 0-544, which shows that uncertainties in assumptions
made about payload can have strong effects on aircraft sizing.

Parameters that are primarily devoted to ensuring safety, such as
never-exceed speed V. and engine y location y.,,, have relatively

Table 13  Key solution variables with comparison to the
reference aircraft, where possible

Free variable Units  Solution value Estimate for reference aircraft

System
Wary Ibf 90,789 92,822 [23]
D N 34,241* N/A
L/D —_— 19.7¢ N/A
Wing
AR, —— 10.2 9.5 [23]
by, m 35.8 35.9[23]
Sw m? 126.0 124.6 [23]
W, Ibf 20,533 N/A
D, N 17,344* N/A
Vertical tail
ARy —— 2.00 1.91 [23]
by m 8.35 7.16 [23]
St m? 34.9 26.4 [23]
W Ibf 3,990 N/A
D, N 6,548 N/A
Horizontal tail
ARy —_— 6.4 6.2 [23]
by m 12.3 14.4 [23]
She m? 23 32.8 23]
Wi Ibf 629 N/A
Dy, N 1,505* N/A
SM —_— 0.15* N/A
Fuselage
Rfuse m 1.85 1.88 [21]
Lfuse m 36.6 39.1[21]
fuse kg 16,039 N/A
Dy, N 8,844* N/A
Landing gear
B m 13.6 15.6 [23]
T m 9.8 5.8 [23]
. in. 45 44.5 [23]
Ibf 3,304 N/A

Ig

“Mean values over the discretized cruise.

Table 14  List of selected sensitivities to
aircraft parameters

Variable Units Sensitivity ~ Value
System
Mmin I 0.530 0.800
Rreq n mile 1.23 3000
Ve m/s 0.425 144
Yeng m 0.510 4.88
Wing

Lu.max —_ —-0.236 2.79

Vertical tail
Vi m/s —-0.959 70.0

Horizontal tail

—_ 0.0336 2.00

Litmax

Fuselage
Wavg,pus&total Ibf 0.544 180

high sensitivities of 0.425 and 0.510, respectively, giving an example
of the safety—performance tradeoff.

The sensitivity to wing maximum lift coefficient C;  _ isnegative
(~0.236) but weakly so due to opposing pressures from takeoff sizing
and structural sizing constraints. A higher maximum lift can mean
lower wing area for a takeoff sizing case (demonstrated by the strong
negative sensitivity on V; of —0.959), but wing structural constraints
mitigate the negative sensitivity because a higher maximum lift
coefficient results in greater wing root moments at a given load factor.
The same opposing pressures mean that the sensitivity to horizontal
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Fig. 12 Variation of fuel weight and total weight with number of passengers.

tail maximum lift coefficient C;,  is weakly positive (0.0336),
showing that structural considerations dominate the aerodynamic
forces in the effect of C;, _ on fuel burn. Note that, despite being
used in similar sets of constraints, the sensitivities to C; _ and
Cr,... have different signs due to the significant functional
differences between the wing and horizontal tail.

F. Solution Behavior with Variation in Fixed Parameters

Sensitivities provide local gradient information about the objective
function with respect to variation in fixed parameters. However, if a
designer would like to understand the effect of larger changes in fixed
parameters, solving the optimization problem over a sweep of the
parameters of interest is required. With most MDO methods, the
computational cost of these sorts of sweeps would be prohibitive, but
the speed of SPs largely mitigates this issue. Sweeps allow designers
to understand how the objective value and other key variables change
with respect to fixed parameters. As an example, 20 aircraft with
capacities ranging from 150 to 210 passengers were optimized. The
optimal fuel weight and the total weight of the aircraft are plotted
in Fig. 12.

Each solution in the parameter sweeps gives the values of all free
variables and the sensitivities to all fixed parameters. Furthermore,
through the addition of dummy variables, the sensitivity to
constraints can be determined. For example, the sensitivities to
different component weights are plotted in Fig. 13. The decreasing
sensitivity to vertical tail weight and increasing sensitivity to fuselage
weight in Fig. 13 indicate the effects of a longer fuselage on the

0.5 T T T T T
— Wing :
—  Vertical Tail e
0.4|| — Horizontal Tail : ///f/ |
— Fuselage L
— Landing Gear s
0.3} e i

o
N
T
i

Sensitivity to component weights

\ _

0‘0 n 1 n T l
150 160 170 180 190 200 210

Number of passengers

Fig. 13 Sensitivities to component weights with number of passengers.
The diverging sensitivities to fuselage and vertical tail weights indicate
the effects of a lengthening fuselage on the subsystems.

fuselage and vertical tail weight trade. As the number of passengers
increases, the growing vertical tail moment arm allows for a reduction
of the required vertical tail area, which reduces weight and drag. This
fuel burn benefit is offset by the fuselage weight growth due to a
larger fuselage volume and length, driven especially by the growth of
bending material weights as the fuselage lengthens.

IX. Conclusions

In this work, signomial programming has been used to tackle the
multidisciplinary design optimization of a commercial aircraft. More
specifically, signomial programming models have been created to
find the optimal preliminary sizing of a tube-and-wing-configuration
aircraft’s wing, vertical tail, horizontal tail, fuselage, and landing
gear. These subsystem models have been combined into a single
monolithic signomial program that captures the coupled nature of
aircraft design.

In doing this work, signomial programming has been
demonstrated as a viable approach to aircraft design optimization,
with a wide range of constraints fitting naturally into the required
formulation. Though not as rigorous as for geometric programs, the
solution method for signomial programs is disciplined and effective.
A significant improvement in fidelity over previous geometric
programming models has been achieved thanks to the relaxed
restrictions on signomial programs. Lagrange multipliers obtained
from the solution procedure mean that, in addition to finding an
optimal design, the models also give local sensitivities to fixed
variables, thus giving insight into the design space.
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